Популярная астрофизика. Философия космоса и пятое измерение бесплатное чтение

Александр Алексеевич Дементьев
Популярная астрофизика. Философия космоса и пятое измерение

© Дементьев А.А., текст, 2022

© Апаева А.Р., иллюстрации, 2022

© Издательство АСТ, 2022

* * *

Предисловие

Мы с вами живем в интересную эпоху, когда вновь возрождается интерес к космосу, причем на новом витке.

Если в XX веке за стремлением покорить космос стояло желание военного господства, то сейчас главные двигатели – экономика и философия.

Экономика – потому что прорыв в покорении космоса поможет решить финансовые проблемы, обеспечить доступ к новым материалам и технологиям.

Философия – потому что космос сейчас становится главной областью, где пока еще сокрыты мировоззренческие смыслы. Где можно попробовать найти ответ на вопросы «Как устроен мир?» и «Что такое человек и зачем он здесь появился?».

Книга ориентирована на широкий круг читателей.

Древние греки умели говорить об устройстве мира просто, используя язык метафор с применением обычной арифметики и геометрии. Представьте, они умели говорить о частицах, не прибегая к сложному уравнению Шредингера! И не вводили 10 новых измерений, как в современной теории струн.

Такую же цель поставил и я в этой книге. Ведь у каждого, даже самого сложного научного объяснения есть аналогии в обычной жизни. Через них понять устройство мира гораздо проще!

Спасибо древним грекам за этот метод, который я у них со всем уважением позаимствовал.

Книг про космос существует немало. В чем уникальность этой книги? В том, что мы обратим взгляд на Вселенную и ее объекты, пользуясь таким инструментом, как наука о человеке.

Как новые открытия изменят быт человека? Что мы узнаем нового о том, как устроен мир?

Есть ли у нас «соседи» в космосе, и если есть, как они живут или выглядят? Как человек может преодолеть ограничения, наложенные на него природой, и все-таки освоить другие планеты?

В первой части мы разберем Солнечную систему. Взгляд через призму философии порождает массу интересных вопросов. Почему условия на нашей Земле идеальны для возникновения жизни? И откуда взялся строительный материал для всего живого?

Новейшие данные математического моделирования говорят нам о том, что ситуация на Земле не всегда будет комфортна для жизни. Поэтому мы узнаем, как скоро Земля вместо уютного гостеприимного места превратится в настоящий ад для всего живого.

Во второй части, посвященной Вселенной, мы познакомимся детально с нашей галактикой и узнаем, что думает наука о загадочных объектах типа черных дыр.

В третьей и четвертой частях мы разберем, какие загадки Вселенной пока остаются неразгаданными и какие законы физики лежат в их основе.

И, наконец, в пятой части погрузимся в атмосферу настоящей научной фантастики: оценим вероятный сценарий космической экспансии, посмотрим, какие планеты могут быть колонизированы в первую очередь и с какими проблемами столкнутся первые колонисты. А также взглянем на другие звездные системы и попробуем предсказать, какие формы может иметь жизнь на планетах с высокой и низкой гравитацией.

Сергей Есенин писал: «Лицом к лицу лица не увидать. Большое видится на расстоянии». Вот и нам надо сделать шаг назад и посмотреть издалека на весь мир через призму ценности для человека.

Наука стала слишком объективистской, кантовской вещью в себе. Мы же ей добавим пятое измерение – человека. И тогда весь мир заиграет для нас новыми красками.

Человечество стоит на пороге больших открытий в космосе. Сейчас мы напоминаем Европу в доколумбову эпоху. Мы твердо знаем, что где-то далеко есть много интересного и важного: земли, ресурсы, другие народы. Но пока просто не доплыли до них.

Сейчас мы находимся в стадии подготовки той самой экспедиции Колумба: систематизируем факты, обучаем и собираем команды, расставляем правильные приоритеты.

Вперед, в путешествие!

Часть I
Солнечная система

В первой части мы поговорим о ключевых объектах Солнечной системы, которые важны для человека. О том, как они возникли, что с ними станет в будущем и какую пользу и угрозу они могут таить в перспективе.

И начнем с нашей родной планеты.

Глава 1
Почему Земля – идеальная планета для жизни

Мы много можем рассуждать о космосе, но все-таки самый важный для нас объект – планета Земля.

Удивительно, но наша Земля будто идеально создана для того, чтобы на ней появилась жизнь.

Судите сами:

Мы находимся в «зоне Златовласки». Так астрофизики называют зоны, которые находятся на идеальном расстоянии от своей звезды. Не слишком жарко и не слишком холодно, в отличие от большинства других планет.

Мощное магнитное поле. Магнитное поле защищает Землю от летящих из космоса заряженных частиц – солнечного ветра и других видов космического излучения. Без такого поля развитая жизнь на нашей планете была бы невозможна, поскольку космическая радиация сжигает все живое.

Вода. Кислород и водород – довольно распространенные в космосе элементы. На нашей планете они оказались в нужной пропорции для построения молекулы H2O. Конечно, воды в Солнечной системе достаточно, но температурный режим на Земле допускает воду в жидком виде. Это уже редкое явление во Вселенной, где обычно либо очень жарко, либо очень холодно.

Твердая основа. Половина известных нам планет Солнечной системы и многие экзопланеты (это планеты, которые вращаются вокруг других звезд) принадлежат к газовым гигантам. Сложные формы жизни на них, скорее всего, маловероятны.

Больше – не надо! У Земли очень удачный размер и плотность. Этого достаточно, чтобы удержать атмосферу (иначе ее сразу сдует солнечным ветром, как на маленьких Меркурии и Луне). Но при этом наша планета и не слишком тяжелая. Любые излишки гравитации усложняют развитие жизни. Если увеличить гравитацию, скажем, в два раза, о космических полетах мы можем забыть на долгие годы. Развить первую космическую скорость и вылететь на орбиту станет для нас очень сложной задачей.

Спутник Луна. Немаленький, но и не очень большой. Ровно такой, какой нужен, чтобы грамотно перемешивать вещество на Земле с помощью приливных сил. Кроме того, спутник такого размера помогает стабилизировать земную ось. Профессор физики Джейсон Барнс из Айдахского университета смоделировал ситуацию, как повела бы себя ось вращения Земли без Луны. Оказалось, что отклонения могли составлять до 20 градусов. Это не катастрофа – жизнь могла бы появиться и развиться и в этих условиях. Но вот комфортной для жизни поверхности было бы меньше.

Стабильность климата. Это очень важное условие для возникновения сложных форм жизни. Климат должен быть стабильным, без резких перепадов между днем и ночью. Трудновато было бы жить на планете, где утром –70 ℃, а к обеду ты сварился. Конечно, к такому не адаптируется ничто живое. Наклон оси Земли – чуть больше 23 градусов, что обеспечивает мягкую смену времен года. Опять же, спасибо Луне!

Солнце – адекватная звезда с умеренной активностью вспышек. Солнце – типичная средняя звезда. Если бы активность Солнца была выше, то вспышек было бы больше, и это повредило бы жизни на Земле. Астрономы не раз наблюдали ситуацию на других звездах, которые выпускают страшные вспышки. И если бы на их планетах была жизнь, такие вспышки ее бы точно уничтожили.

Нет рядом сверхмассивных тел. Если бы вместо Венеры рядом с Землей вращался монстр типа Юпитера, нашей планете пришлось бы сложно. О стабильной орбите пришлось бы забыть. Именно поэтому между Марсом и Юпитером – пояс астероидов, вещество просто не смогло собраться в единую планету. С другой стороны, Юпитер находится как раз там, где нужно: он собирает опасные метеориты и кометы, отводит их от Земли за счет своей гравитации.

Возраст. Нашему Солнцу 4,5 миллиарда лет. Появилось оно спустя 9,3 миллиарда лет после рождения нашей Вселенной. Выглядит как ничего не значащие цифры. Однако появление планеты, похожей на Землю, – задача непростая. Ведь такая планета должна образоваться у звезды, богатой тяжелыми элементами (в астрофизике это элементы тяжелее водорода и гелия). Более ранние звезды не имели должной концентрации тяжелых элементов, поэтому все их планеты – газовые гиганты. У них просто не хватает нужного материала, чтобы появилась планета земного типа.

Глава 2
Что способствовало благоприятным условиям для возникновения жизни на Земле?

Этот вопрос из сферы философии, а не физики. Любой физик ответит на него просто: «Земля идеальна для жизни, потому что жизнь возникла на Земле и адаптировалась к ней. Были бы на Земле другие условия – жизнь была бы совсем другой».

Когда я обсуждал эти факты с Яном Фрискусом, биологом из Университета прикладных наук Ван Холла Ларенштейна (Нидерланды), он бросил циничную фразу, которая мигом разбила все очарование и романтический настрой вашего покорного слуги: «Это не Земля идеальна для жизни. Это жизнь идеальна для Земли!»

Земля не обеспечивает нас всем необходимым для нашей жизни. Условия могли бы быть и лучше.

Не все места на Земле можно назвать идеальными. Есть, к примеру, подводные вулканы – максимально отвратительные условия для человека. Но экстремофилы – микроорганизмы, которые умеют выживать в суровых условиях без кислорода, при сверхнизких/сверхвысоких температурах и давлении, – чувствуют себя там прекрасно, потому что адаптировались к этим условиям. Были бы условия другие – адаптировались бы и к ним.

Но для организма, подобного человеческому, Земля, действительно, имеет условия, близкие к идеальным.

Так и хочется сказать словами героя произведения Вольтера «Кандид, или Оптимизм»: «Все к лучшему в этом лучшем из миров!»

Но первое впечатление обманчиво. Несмотря на то что жизнь на Земле возникла, ей постоянно угрожает опасность извне.

Только за последние 540 миллионов лет (всего 12 % от времени существования Земли) жизнь на нашей планете пережила 5 крупных массовых вымираний и 18 вымираний меньшего масштаба. Причины были как внешние (например, падение метеорита), так и внутренние (вулканическая деятельность, смена состава атмосферы и т. п.).

Массовые вымирания ни разу не уничтожали жизнь целиком, но наносили серьезный ущерб: исчезало от 40 до 90 % видов животных, населявших планету на тот момент.

Последние научные данные говорят о том, что перед нами стоит немало вызовов. Но перед тем как понять, что нас ждет, давайте посмотрим, как появилась Земля.

Первая фотография Земли из космоса была сделана в 1946 году. Американская баллистическая ракета на базе немецкой «Фау-2» засняла нашу планету на кинопленку.

Первые пуски были неудачными: устройство падало, превращаясь в обломки. Но затем боеголовку решили отделить взрывом. Эта мера помогла, сильно замедлив падение.


Первая фотография Земли из космоса (суборбитальная ракета A4), полет № 13, 24 октября 1946 года). Фото White Sands Missile Range/Applied Physics Laboratory


Ракету запустили вертикально. Во время полета камера, установленная на ракете, непрерывно фотографировала Землю. Ракета поднялась на высоту 105 километров, после чего рухнула. Ракета разбилась вдребезги, столкнувшись с поверхностью планеты на скорости 100 м/c. От камеры остались одни осколки, но пленка, упакованная в стальную кассету, сохранилась.

Изначально «Фау-2» изобрели немцы в конце Второй мировой. Этими ракетами атаковали в первую очередь Великобританию.

Однако США, несмотря на запуск ракеты, на долгие годы отстали от СССР в вопросе освоения космоса. Первый – советский – искусственный спутник Земли был выведен на орбиту высотой в апогее 947 километров в 1957 году. Мы первыми успешно вернули с орбиты животных. А в 1961 году Советский Союз запустил в космос первого человека – Юрия Гагарина.

Глава 3
Эволюция Земли

Давайте посмотрим, как возникла наша Земля и какое ее ждет будущее.

Как появилась Земля

У звезд есть протопланетные диски. Это облака пыли, которые вращаются вокруг своих звезд, когда они только образовались. Протопланетный диск вначале раскаленный, он подпитывает звезду веществом.

Со временем протопланетный диск начинает остывать. Частицы собираются в более плотные комки вещества. Сперва появляются частички размером до 1 сантиметра. Затем из них начинают образовываться глыбы из льда и камня. Они сталкиваются друг с другом и постепенно слипаются. Глыба становится все больше, вещество начинает уплотняться все сильнее, собирая окрестные микрочастицы. Формируется объект, который в астрофизике называется планетезималь. Это глыба, напоминающая астероид.


Планетезималь. Иллюстрация


В определенный момент, когда масса становится очень большой, планета начинает принимать форму шара. Это максимально эргономичная форма для объекта с большой гравитацией.

Удивительно, но процесс формирования из глыбы полноценной планеты очень быстрый, несмотря на космические расстояния. Планета типа Земли может образоваться всего за 100 тысяч лет. Не то чтобы мы с вами за это время не успели бы даже сбегать за кофе, но по космическим меркам это буквально миг. Всего же процесс образования полноценной планеты из микропылинок занял до 20 миллионов лет.

Параллельно идет зачистка орбиты. Объекты с пересекающимися сферами сталкиваются, в результате чего у каждой планеты возникает своя самостоятельная орбита.

Так 4,57 миллиарда лет назад появилась наша Земля. Чуть позже, спустя примерно 20 миллионов лет, у нашей планеты появился спутник. Вероятная причина – столкновение Земли с объектом размером с Марс, из-за которого и откололся кусок, ставший нашим спутником – Луной.

В раскаленном шарике более плотное вещество погружалось вниз. В итоге образовались слои с ядром внутри. Земное ядро состоит из сплава железа и никеля с небольшими добавками. Это металлическое ядро в дальнейшем сыграет огромную роль для всего живого на Земле.

ИНТЕРЕСНЫЙ ФАКТ

В космосе есть туманность, которая состоит из крепкого рома с запахом малины.

В нашей галактике есть туманность, по вкусу напоминающая ром с нотками малины. Да и температура там комфортная – 27 градусов тепла. Где находится этот космический рай и как он образовался? В 120 парсеках от центра нашей галактики расположено пылевое облако Стрелец В2. Это практически в центре Млечного Пути – как храм Христа Спасителя от Кремля. Масса облака в 3 миллиона раз больше массы Солнца.

В районе Стрельца В2 есть интересный участок, который получил романтическое название – Большая колыбель молекул. Это плотное скопление газа с высокой по меркам межзвездного пространства температурой. Газ здесь разогревается до 300 Кельвинов (27 ℃). И здесь недавно родилась новая звезда. Именно в этой «колыбели» ученые регулярно находят множество органических молекул.

Оказалось, что вещество здесь насыщено двумя органическими соединениями – этилформиатом и n-пропилцианидом. Первое вещество придает малине ее вкус и запах. Второе – это основная составляющая рома. Кроме спирта, там обнаружена и вода. Идеальное сочетание веществ, хотя и отличается от наших классических пропорций спирта к воде – 40 к 60. Содержание спирта в туманности оказалось гораздо выше.

Какая форма у нашей Земли

Разумеется, не плоская. Но и не шар!

Земля представляет собой эллипсоид. Ее диаметр не равномерен по поверхности: на экваторе он на 43 километра больше, чем на полюсах. Получается, наша планета немножко сплюснута.

Не все спутники планет в Солнечной системе имеют форму, близкую к сфере. Спутники Марса, Фобос и Деймос, имеют очень неровную форму. Спутник Нептуна, Протей, также далек от симметричной формы. Возможно, планеты когда-то выхватили их из ближайшего пояса астероидов, где летает много подобных глыб.

Только крупные космические объекты со временем становятся сферическими (или эллипсоидальными) под действием силы тяжести. Например, Земля при формировании состояла, по сути, из раскаленной жидкой массы. Гравитация же всегда направлена к центру масс. Под действием силы тяжести вещество планеты сжималось – и образовался чуть сплюснутый шар.

Более твердое и тяжелое вещество ушло вглубь, в нижние слои. Такая слоистая структура с металлическим ядром внутри привела к появлению магнитного поля. Это поле отклоняет космическую радиацию, которая разрушительна для всего живого. Также магнитное поле защищает атмосферу, не дает ей рассеяться.

Газы, которые выходили из земной коры, образовали первичную атмосферу, состоящую преимущественно из водорода и гелия.

Хотя Земля и успешно отбивала радиацию и солнечный ветер, условия на ней были слабо пригодны для жизни. Потребовались сотни миллионов лет и серия катастрофических событий, которые, как ни парадоксально, сделали Землю более дружелюбной для всего живого.

Важным этапом в эволюции нашей планеты стала бомбардировка метеоритами. Они могли принести на Землю важные для будущей экосистемы материалы.

Тяжелая бомбардировка: Как 4 миллиарда лет назад Земля была расстреляна метеоритами

Поздняя тяжелая бомбардировка – так в геофизике называется период, когда Земля 4 миллиарда лет назад была буквально расстреляна метеоритами.

Метеориты взрывали земную кору, оплавляли поверхность. Это сильно повлияло на геологию нашей планеты и на состав полезных ископаемых.

Астрофизическая теория гласит, что в то время Юпитер, Сатурн и Нептун меняли орбиты. Из-за этого сместились и пояса астероидов, их орбиты стали пересекаться с Землей, Марсом, Венерой и Меркурием. И все планеты земной группы подверглись массивной бомбардировке метеоритами, которые ежедневно падали на поверхность. В этот период и было образовано большинство кратеров на Луне.

Сейчас орбиты крупных газовых гигантов стабилизировались. И теперь главный – и самый опасный – пояс астероидов расположен между Марсом и Юпитером. Второй пояс астероидов вообще вылетел за пределы орбиты Нептуна.

Оценить, сколько метеоритов упало на Землю, сейчас сложно: океаны, земля, живые организмы внесли свои коррективы. Но масштаб можно оценить по Луне. В то время на спутнике Земли образовалось более 22 тысяч крупных кратеров, диаметр которых превышает 20 километров. Диаметр 40 кратеров превышает 1 тысячу километров, есть несколько кратеров с диаметром свыше 5 тысяч километров.

Для сравнения: кратер, который уничтожил динозавров, в диаметре достигает 180 километров. А кратер, из-за которого предположительно случилось пермское вымирание, в диаметре составляет 500 километров. Тогда погибло более 90 % простейших морских и свыше 70 видов наземных позвоночных.

Последняя метеоритная бомбардировка состоялась 3,8 миллиарда лет назад. А уже 3,7 миллиарда лет назад появилась первая жизнь. Совпадение интересное. Оно и дало основание гипотезе панспермии: первая жизнь попала на Землю из космоса и была занесена метеоритами.

Эта гипотеза научно не доказана, хотя у нее есть поклонники в научной среде. Правда это или нет? Чтобы ответить на этот вопрос, потребуется не одна сотня новых научных открытий. Но гипотеза явно заслуживает внимания, так как совпадение интересное.

ИНТЕРЕСНЫЙ ФАКТ

Знаете ли вы, что Земля не одинока на своей орбите? С нами орбиту делит так называемый «троянский астероид» – 2010 TK7.

Планеты на заре существования Солнечной системы «зачистили» орбиты под себя, выбив с них другие небесные тела – планеты поменьше, астероиды и т. д. Однако кое-кто остался – например, астероид 2010 TK7. Он движется практически точно по земной орбите, но в 60 градусах впереди нашей планеты. Этот астероид находится в так называемой точке Лагранжа. Это точка, где уравновешены силы тяжести Земли и Солнца.

Астероид 2010 TK7 не опасен для нашей планеты. Самое близкое расстояние, на которое он подходит, – это 50 расстояний от Земли до Луны.

Воды на земле много. Но бывает и больше

Считаете, что наша планета богата водой? Если собрать всю воду, что есть на Земле, она поместится в сферу диаметром 1385 километров. Даже расстояние от Москвы до Анапы больше – 1510 километров! Просто все океаны, ледники и озера размазаны по Земле тонким слоем. На воду приходится лишь 0,12 % всего объема нашей планеты. И 97,5 % этой воды не пригодны для питья.

Земля не лидирует по содержанию воды даже среди планет Солнечной системы. На первом месте – Европа, спутник Юпитера. Европа по структуре похожа на нашу планету, но, как видно на фото, заметно уступает Земле в габаритах. Предположительно, Европа покрыта слоем льда толщиной в 30 километров. А под этим льдом, скорее всего, находится океан из жидкой воды.

Так что Землю нельзя назвать полноценной планетой-океаном: есть вода на поверхности, но глубина океана невелика относительно размеров самой планеты.

Но у нашей планеты есть другое важное свойство. Из всех планет Солнечной системы только на Земле существует вода в жидком виде прямо на поверхности. 70 % поверхности нашей планеты действительно покрыты водой.

Когда возникла жизнь на земле

Ученые сходятся во мнении, что жизнь на Земле появилась около 3,7–4 миллиардов лет назад.

ИНТЕРЕСНЫЙ ФАКТ

Жизнь меняет Землю

Жизнь появилась на нашей планете, но она, в свою очередь, сильно влияет на экосистему Земли. Например, на Земле не было кислорода в таком количестве. В земном воздухе содержится 21 % кислорода. Если посмотреть на атмосферы других планет Солнечной системы, то кислород там присутствует только в микроскопических количествах. Кислород на Земле в большом количестве возник из-за деятельности микроорганизмов.

Сперва жизнь развилась до одноклеточных форм, которые тонким слоем покрывали дно океана. Питались они с помощью фотосинтеза и плавно наполняли атмосферу нашей планеты кислородом.

Довольно долго планета была покрыта льдом. Причина этого проста: активность Солнца была на треть слабее, чем в наши дни.

Со временем активность Солнца росла, льды отступали. Это стимулировало развитие жизни. Сложные многоклеточные появились лишь 580 миллионов лет назад.

Как лорд Кельвин едва не уничтожил теорию Дарвина с помощью законов физики

В XIX веке критикам теории эволюции не давала покоя мысль, что человек подчиняется тем же законам природы, что и животные.

Знаменитый физик лорд Кельвин был ярым противником эволюции – и самым опасным для этого нового (на тот момент) научного течения. Выдающийся ученый XIX века утверждал, что Земля недостаточно стара, чтобы позволить естественному отбору разыграться. И по законам физики XIX века Кельвин был абсолютно прав!

Из школьного курса физики вы наверняка помните лорда Кельвина по температуре и понятию «абсолютный нуль». Именно Кельвин предложил температурную шкалу, которую используют в современной физике. И 0 по Кельвину – это тот самый абсолютный ноль, в котором все движение замирает. По Цельсию это будет –273,15 градуса.

Лорд Кельвин – это британский физик Уильям Томсон, которому титул пожаловала королева Виктория. Он внес большой вклад в развитие науки и научных инструментов.

Но хотя научные работы и сделали Кельвина знаменитым в научном сообществе и для потомков, публике он был больше известен в других амплуа. В частности, он был в свое время самым ярким критиком теории эволюции.

Это сейчас теория эволюции признана всеми учеными и споры ведутся лишь по поводу ее отдельных механик. В XIX веке теория Дарвина вызвала сильнейшую бурю протеста.

Как можно приравнять человека к животным?! Мы подчиняемся тем же законам, что муравьи и кошки? Это невозможно!

«Да-да, Бог сотворил всех животных такими, как мы их видим сейчас. А скелеты других, несуществующих видов – подделка» – вторили представители церкви.

Однако рациональных аргументов против теории было не так уж и много. И главный из них высказал лорд Кельвин. Аргумент был настолько серьезным, что с ним было вынуждено считаться все научное сообщество.

Кельвин подсчитал на основе термодинамических законов, что возраст Солнца – 100 миллионов лет. За большее время вещество уже прогорело бы. И в этом Томсон был прав! Он же не знал, что реакции на Солнце подчиняются не термодинамике, а совсем другим законам.

Земля, с учетом теории происхождения планет, существовала, по оценкам лорда Кельвина, всего 40 миллионов лет.

Для эволюции требуются гораздо большие сроки. 100 миллионов лет – это ничтожно мало, чтобы жизнь из простейших организмов достигла того многообразия, что мы видим сейчас.

Тогда ученые не могли точно посчитать, сколько времени для этого нужно. Но интуитивно понимали, что за 100 миллионов лет такого масштаба не будет. И они были правы. Вот несколько интересных цифр:

Чтобы животное размером с мышь эволюционировало до гиганта размером со слона, нужно минимум 40 миллионов лет. То есть все время существования Земли по оценке Кельвина.

Первая жизнь возникла около 4 миллиардов лет назад. Через 1,5 миллиарда лет бактерии научились фотосинтезу.

Первое многоклеточное появилось 650 миллионов лет назад.

То есть 3,35 миллиарда лет жизни потребовалось только для того, чтобы развиться до многоклеточных форм. И еще десятки миллионов лет – на эволюцию каждого из видов.

Конечно, на тот момент никто уже не верил в оценки религиозных мыслителей, что Земле 6 тысяч лет. Но даже 40 миллионов – это очень мало! По оценкам самого Дарвина, на эволюцию всего живого на Земле нужно 200 миллионов лет.

«Раз для эволюции требуются гораздо бóльшие сроки, чем время жизни Солнца и Земли, – значит, жизнь на нашей планете не могла развиваться по ее законам», – заявил Кельвин. Следовательно, животные уже были сотворены приспособленными для своих биологических ниш.

Чарльз Дарвин ушел из жизни в 1882 году – как раз в разгар критики его теории. И можно только посочувствовать мэтру, ведь все последние годы его жизни люди сомневались в том, чему он эту жизнь посвятил! Аргументы Кельвина были железобетонными по канонам науки того времени. Физика считалась самой точной из естественных наук и самой строгой по методологии. А значит, ее данные ставились во главу угла. Дела у теории естественного отбора были плохи.

В 1895 году физики окончательно сошлись во мнении, что возраст Земли составляет 20–40 миллионов лет. Теория естественного отбора выглядела обреченной.

А уже в следующем году французский физик Антуан Анри Беккерель открывает радиоактивность. Тогда ученые еще не осознали масштаба открытия, но дни теории Кельвина уже были сочтены.

В 1903 году Беккерель вместе с Пьером и Марией Кюри получает Нобелевскую премию за свое открытие. Радиоактивность признается всеми учеными.

А далее начался лавинообразный эффект. Радиоактивность предоставила человечеству принципиально новый метод измерения возраста древних объектов.

Зная время распада радиоактивных изотопов, можно отследить, на какой стадии они находятся в горных породах. И вычислить, когда они были образованы.

Но главное, Солнце и другие звезды не прогорают так быстро, как считалось ранее. Ведь в их недрах происходят ядерные реакции, у которых куда больший потенциал и энергетическая мощность.

Уже в 1911 году возраст Земли увеличили до 1,7 миллиарда лет. А в 1953 году, после более точных подсчетов, – до 4,5 миллиарда лет, что и стало общепризнанной версией.

Теперь у естественного отбора появилось то самое время, в котором он так нуждался.

Из неживого в живое

Жизнь во всем ее многообразии изучает биология. И история появления жизни на нашей планете не вписывается в рамки этой книги. Однако важно упомянуть один момент.

В 1924 году советский биолог Александр Опарин предложил термин «первичный бульон». Такое вот необычное название. Хотя я тоже, когда в бедные студенческие годы занимался наукой, постоянно о еде думал. Жизнь на Земле возникла путем химической эволюции молекул, содержащих углерод.

Органические вещества на нашей планете возникли из более простых соединений – метана, воды и аммиака. Под действием электрических разрядов – молний и ультрафиолета – они получили базовую энергию для химических реакций.

В дальнейшем эта концепция развивалась и дорабатывалась. Пока вопрос появления жизни остается открытым. Доминирующая гипотеза – так называемая Гипотеза мира РНК (РНК – рибонуклеиновая кислота), согласно которой молекулы рибонуклеиновых кислот стали первыми хранителями генетической информации.

Но оставим этот вопрос биологам. Нам интереснее другое. Откуда берется необходимая органика? Откуда взялся «бульонный кубик» для первичного бульона?

Оказывается, во Вселенной довольно много органических соединений! У Земли органические соединения были, скорее всего, еще на стадии формирования. И в дальнейшем строительный материал для жизни добавили метеориты. Подробнее об этом мы поговорим во второй части, когда речь пойдет о химическом составе Вселенной.

Сколько времени осталось для жизни на земле

Не так-то много, как может показаться на первый взгляд. По разным оценкам, условия на Земле будут благоприятны для жизни еще в течение 0,5–1 миллиарда лет.

Если учесть, что жизнь на нашей планете появилась примерно 4 миллиарда лет назад, мы уже давно прошли половину пути и плавно движемся к закату.

Однако Солнце, по оценкам современных ученых, будет существовать еще как минимум 7,5 миллиарда лет. Что же такого произойдет с Землей, что жить на нашей планете станет невозможно?

Что ждет землю дальше

Благоприятный период для нашей планеты продлится не так уж долго. Произойдет ряд внешних и внутренних изменений, которые сильно ударят по всему живому на планете.

В ноябре 2021 года ученые Кацуми Одзаки из Университета Тохо и Крис Рейнхард из Технологического института Джорджии по заказу NASA сделали прогноз о будущем нашей планеты. Цель – понять, сколько еще времени Земля будет пригодной для жизни. Цифры получились печальные. Катастрофические изменения для биосферы ждут нас уже спустя 500 миллионов лет. А спустя 1,5 миллиарда лет условия на Земле станут абсолютно непригодными для жизни.

Самый главный для нас фактор – Солнце.

Активность Солнца продолжит расти. Она и сейчас набирает обороты. Это происходит из-за накопления гелия – важного вещества для ядерных реакций внутри нашего светила. Поэтому Солнце светит все ярче и жарче.

В среднем, в течение каждых 110 миллионов лет светимость Солнца растет на 1 %. И за миллиарды лет эта прибавка становится существенной.

Через сотни миллионов лет это будет сильно заметно. Температура поднимется настолько, что океаны начнут испаряться. Вода на планете будет все больше существовать не в жидком и твердом состоянии, а в виде пара. Климат станет очень влажным, а парниковый эффект – крайне высоким. Из-за этого вода начнет улетучиваться из стратосферы в космос.

А через 1,1 миллиарда лет все океаны, скорее всего, испарятся с поверхности планеты.

Через 3,5 миллиарда лет на нашей планете будет так же жарко, как сейчас на Венере.

Кроме этого, активность Солнца приведет к снижению концентрации углекислого газа в атмосфере, так как будут выветриваться силикатные материалы. Углекислого газа станет мало для фотосинтеза. Именно на этом факте основан прогноз, что жизнь на Земле начнет исчезать уже через 500 миллионов лет.

Сокращение растений приведет к снижению концентрации кислорода в атмосфере планеты. Через 1 миллиард лет концентрация кислорода в атмосфере сократится в 21 раз – с текущих 21 % до 1 %!

Наклон оси. Через 1,5 миллиарда лет наклон оси нашей планеты может начать хаотично меняться, вплоть до отклонения на 90 градусов. Почему наклон оси будет меняться? Во-первых, будет меняться трение между внутренними слоями, в частности между мантией и ядром. Во-вторых, Луна постепенно удаляется от Земли почти на 4 сантиметра в год. И через полтора миллиарда лет ее влияние заметно снизится.

Если Земля будет направлена к Солнцу под углом 90 градусов, то полюса станут перпендикулярны. Одна половина планеты будет получать много тепла и света, а другая – страдать от их нехватки. Соответственно, в первом случае климат будет слишком жарким, температура поверхности будет подниматься до 80 градусов. В темной части, наоборот, будет сильный холод.

Земное ядро начнет остывать. Это приведет к серьезным климатическим переменам. Как я писал выше, трение между мантией и ядром изменится, что повлияет на скорость вращения и угол наклона.

Сутки постепенно увеличиваются из-за замедления вращения. Во времена динозавров, незадолго до их гибели, сутки длились около 23,6 часа. Сейчас они также прирастают, но за человеческую жизнь заметить это невозможно. Через 250 миллионов лет длительность суток будет составлять 25,5 часа.

Красный гигант. Если жизнь на Земле чудом сохранится, несмотря на все эти факторы, спустя примерно 5 миллиардов лет нас ждет неминуемое.

Солнце начнет превращаться в красного гиганта и резко расти в размерах. Это связано с падением давления внутри светила, так как вещество постепенно прогорает в его недрах.

Через 5 миллиардов лет красный гигант достигнет орбиты Земли и захватит нашу планету.

Расширяться до бесконечности не получится, и в какой-то момент произойдет взрыв: Солнце сбросит оболочку и станет белым карликом. И будет доживать свой век в таком виде.

Но, как я уже писал ранее, жить на Земле станет асолютно невозможно гораздо раньше. Нам отпущено примерно 0,5 миллиарда лет.

500 миллионов лет… Не так уж много, чтобы достичь степени развития, которая позволит улететь от катастрофических изменений на нашей планете.

С другой стороны, представьте, как люди уже со стороны, из другой звездной системы, будут смотреть на рост красного гиганта. И рассказывать, как когда-то в этой звездной системе родилась жизнь, которая распространилась по всей галактике!

Эволюция солнца. Как возникла наша звезда и что ждет ее в будущем

Часть интриги из этой главы я лихо уничтожил в главе про Землю. Однако о нашем светиле стоит поговорить особо.

Солнце – вполне обычная для нашей галактики звезда, относится к классу желтых карликов.

Если бы Солнце было человеком, сейчас ему было бы около 30 лет. Этот человек жил бы в каком-нибудь крупном провинциальном городе, далеком от столичной суеты и лоска.

Таких людей очень много в России. Таких звезд, как Солнце, очень много в галактике. И они весьма комфортны для появления жизни.

Если представить Москву центром, то наш герой жил бы и работал в Белгороде или Курске. На какой-нибудь очень надежной работе. Полагаю, был бы чиновником среднего ранга. Звезд с неба, простите за каламбур, он бы не хватал. Но жил бы чуть лучше большинства россиян.

Солнце входит в 15 % наиболее ярких звезд в нашей галактике, хотя и сильно уступает лидерам. 85 % звезд Млечного Пути – разные другие карлики: красные, коричневые, белые, которые светят гораздо более тускло.


Солнце находится на периферии нашей галактики Млечный Путь, подальше от высокой концентрации звезд и массивной черной дыры в ядре галактики. Максимально комфортно и безопасно.


Спиральная галактика Mrk 1337. Фото NASA/ESA Hubble Space Telescope


Что такое «жизнь звезды» и сколько проживет Солнце

Формально небесный объект типа «звезда» может существовать триллионы лет. Просто переживает ряд трансформаций – из газового облака в молодую звезду, затем полноценная «взрослая» жизнь. И под конец превращение, в зависимости от собственной массы, в белого карлика, нейтронную звезду или черную дыру.

Однако в астрофизике принято считать жизнью звезды время, когда она подпитывается внутренними ядерными реакциями. Это становится единственным источником энергии звезды и причиной излучения.

Поэтому жизнь Солнца ориентировочно продлится 10 миллиардов лет. Это жизнь в статусе белого карлика. А период до рождения звезды и после уже как таковой жизнью Солнца не считается.

Как возникло Солнце

Как и любая другая звезда – из газа. Этот газ появился после взрыва нескольких сверхновых звезд. Так гибель первых крупных звезд в галактике дала новую жизнь нашему светилу.

Звезды образуются из разреженных облаков межзвездного газа. В основном этот газ состоит из водорода и гелия. Поначалу это холодные облака очень низкой плотности, но довольно обширные.

В них есть перекосы материи – где-то вещества чуть больше, где-то меньше. Возникает гравитационная неустойчивость и начинается сжатие. Процесс длится до тех пор, пока не соберется так называемся протозвезда. В ее основе – сильно разогретый газ. В недрах протозвезды запускаются термоядерные реакции синтеза гелия из водорода. Так и рождается новая звезда.

Процесс этот может длиться по-разному, все зависит от массы будущей звезды. Крупная звезда может образоваться очень быстро по меркам космоса – за несколько миллионов лет.

Совсем маленьким звездам типа красных и коричневых карликов может потребоваться до 10 миллиардов лет, чтобы из газа получилась звезда. Диапазон получившихся звезд варьируется от гигантов в 150 солнечных масс до маленьких звезд с массой всего 7 % от солнечной.

Из чего состоит Солнце

Первоначально в основе Солнца – водород и гелий, как и у большинства звезд. В дальнейшем в результате термоядерных реакций в недрах Солнца стали возникать более тяжелые элементы.

Сейчас Солнце на 73 % состоит из водорода и на 25 % – из гелия. Оставшиеся 2 % приходятся (в порядке убывания концентрации) на кислород, углерод, неон, азот, железо, магний, кремний и т. д.

Из сюрпризов: у Солнца высокая, по сравнению с другими звездами, концентрация золота и урана. Это подтверждает гипотезу, что Солнце возникло из газа, оставшегося после взрыва сверхновых.

ИНТЕРЕСНЫЙ ФАКТ

Наша планета возникла из протопланетного диска, который вращался вокруг Солнца. Это также газ, оставшийся после взрыва сверхновой. Поэтому на Земле в целом больше золота, по сравнению с другими космическими объектами. Плюс позднейшая метеоритная бомбардировка занесла на нашу планету еще часть этого драгоценного металла.

Кстати, Солнце довольно плотное по нашим меркам. Интуитивно большинство людей считает, что оно газообразное и если бы не сверхвысокая температура, то можно было бы легко поводить по нему рукой, как по облаку или воздуху.

На самом деле плотность Солнца составляет 1,4 г/см³. Это в 1,4 раза больше, чем у воды. Поэтому, не будь солнечное вещество таким раскаленным, плавать в нем было бы довольно интересно: человеку пришлось бы прикладывать куда меньше усилий, чтобы держаться на поверхности. А вот нырять было бы трудно.

ИНТЕРЕСНЫЙ ФАКТ

Если вы поместите Сатурн в воду, он будет плавать.

Плотность Сатурна настолько мала, что, если бы вы поместили его в гигантский стакан с водой, он бы плавал. Фактическая плотность Сатурна составляет 0,687 г/см3, а плотность воды – 0,998 г/см3. Плотность Юпитера в два раза больше, чем у Сатурна, – 1,330 г/см3, что соответствует плотности… меда!

Юпитер по плотности сильно отстает от Земли, но, если погрузить его в гигантский резервуар с водой, он все-таки утонет, так как плотнее.

Желтые карлики – не желтые

Желтые карлики – это весьма распространенный тип звезд. Они имеют массу от 84 до 115 % от массы Солнца.

Свет желтых карликов – белый. Почему же Солнце для нас светит то желтым, то оранжевым на рассвете и алым на закате? Все дело в рассеивании частиц атмосферой.

Белый свет, как мы помним из курса школьной физики, – это смешение всех цветов, что хорошо видно по радуге.

Белый свет, испускаемый Солнцем, рассеивается по-разному, в зависимости от его положения на горизонте.

Синие фотоны рассеиваются быстрее. И когда Солнце находится низко над горизонтом, синие фотоны не проходят атмосферу, поэтому Солнце кажется нам красным.

Что ждет солнце в будущем

Живут желтые карлики в среднем 10 миллиардов лет. После чего превращаются в красных гигантов: резко увеличиваются в габаритах и сбрасывают лишнее вещество.

Крупные звезды делают это эффектно – резкой вспышкой. Такие астрономические события называются «взрыв сверхновой». Происходит резкий всплеск светимости, после этого оболочка сбрасывается, а в этом месте возникает туманность.

Солнцу не хватает массы, чтобы взорваться, как сверхновая, поэтому отход оболочки произойдет более спокойным путем. По факту, на этой стадии жизнь звезды, по терминологии астрофизиков, прекращается.

Белые карлики составляют до 10 % от общего числа звезд в нашей галактике. Масса белых карликов сравнима с солнечной, только они очень компактны: их радиус почти в 100 раз меньше, чем радиус нашего Солнца. Вещество получается очень плотным.

Закат солнца. Навечно

Солнце станет белым карликом. Что это за тип звезды и возможна ли рядом с ней жизнь? Примерно через 5 миллиардов лет Солнце превратится в красного гиганта. На этой стадии Солнце будет раздуваться в размерах, пока не поглотит несколько ближайших планет, включая Землю.

Причина такого раздувания – выгорание вещества. У Солнца уже не получается соблюдать баланс температуры и давления, чтобы сохранять свои границы.

ИНТЕРЕСНЫЙ ФАКТ

Во времена неандертальцев в небе светили два Солнца. 70 тысяч лет назад люди могли наблюдать удивительное зрелище – в небе горели сразу две звезды.

Второй звездой в небе Земли оказалась звезда Шольца. 70 тысяч лет назад эта звезда максимально приблизилась к нашей Солнечной системе.

Звезда Шольца – небольшая звезда, так называемый красный карлик, масса которого в 8 раз меньше Солнца. «Второе Солнце» светило не очень ярко, гораздо слабее Луны. Жаль, что люди тогда не могли ни писать, ни рисовать и не оставили потомкам воспоминаний об этом событии. Спустя несколько тысяч лет Солнце и звезда Шольца разлетелись.

После этого красный гигант сбросит часть вещества (по прошествии некоторого времени издалека это будет выглядеть как туманность). По оценкам Ричарда Погге, профессора астрономии из Университета штата Огайо, Солнце потеряет 28 % своего вещества. И после этого превратится в белого карлика. Мы можем прогнозировать, что будет с нашим Солнцем. И даже немного заглянуть в будущее, причем не только в теории, но и на практике.

Туманность «Улитка» – ближайшая к нашей Солнечной системе. Находится в 650 световых годах. Правда, где ученые разглядели улитку, не совсем понятно. В соцсетях фото туманности окрестили «Глаз Бога», что гораздо ближе по ассоциации, на мой взгляд.

Туманность «Улитка» образовалась после гибели звезды, похожей на наше Солнце. Она взорвалась, как сверхновая, и сбросила оболочку, которая и образовала туманность. Появилась туманность 10 600 лет назад. Наши предки наверняка видели в небе гигантскую вспышку. Возможно, в течение месяца их ночи были гораздо светлее, почти как белые ночи. В диаметре «Улитка» растянулась на два с половиной световых года. От звезды же в центре остался простой белый карлик, который практически невидим.

Подобная судьба постигнет и Солнце. Наша звезда сбросит оболочку, оставив в центре белого карлика.

Из чего состоят белые карлики

Масса белых карликов сравнима с солнечной, только они очень компактны: их радиус почти в 100 раз меньше, чем радиус нашего Солнца. Вещество белого карлика получается очень плотным. Аналогов ему не найти на нашей планете.

По оценкам доктора философии и популяризатора астрономии Стивена П. Марана, игральный кубик из этого вещества весил бы аж 2,5 тонны! До нейтронной звезды или черной дыры, конечно, далеко. Но это одно из самых плотных веществ во Вселенной. Белый карлик так уплотняется, потому что гравитация максимально сдавливает вещество. Вещество похоже на обычное, звездное, но давайте вспомним, что это звезда на поздней стадии эволюции, когда много вещества выгорело. И здесь происходит сдвиг в сторону более тяжелых элементов.

Маленькие белые карлики буквально являются гелиевыми шариками. «Гелиевыми шариками» становятся звезды, которые на основной стадии были меньше Солнца в два раза и более. Их массы и температуры не хватает для запуска термоядерных реакций. Поэтому в их составе – компактный гелий, оставшийся после того, как прогорел весь водород. Солнце же будет относиться к белым карликам второго типа, которые обогащены углеродом и кислородом.

Может ли существовать жизнь на планетах в системах с белым карликом

Теоретически может. Для этого планета должна быть очень близка к своей звезде. Белый карлик, хоть и является тусклой звездой, продолжает излучать тепло и свет. Представьте себе головешки в потухшем костре. Еле тлеют, но дают немного света и тепла, если сесть максимально близко и протянуть ладони. Такая же история и с белым карликом.

Самое дальнее теоретическое расстояние, при котором жизнь возможна, – это 0,02 астрономических единицы (1 а. е. равна расстоянию от Солнца до Земли). То есть как минимум в 50 раз ближе расстояния от Земли до Солнца. Это даже намного ближе, чем расстояние до Меркурия. Конечно, при этом приливные силы будут высокими, на подобных планетах жить будет крайне некомфортно. Однако вероятность этого крайне мала, ведь перед белым карликом следует стадия красного гиганта. В этот момент звезда «съедает» ближайшие планеты. А на отдаленных планетах жизнь в системах с белым карликом невозможна – слишком холодно.

Гипотетически возможный сценарий: белый карлик подхватит планету-изгоя (отдельные планеты, которые путешествуют по галактике в гордом одиночестве). И уже там разовьется жизнь. Вероятность такого сценария крайне мала. Но и Вселенная настолько огромна, что есть шанс перебрать все возможные варианты.

Черный карлик

Любопытно, но белый карлик – это еще не финал эволюции звезды солнечного типа. По оценкам ученых, после того как все вещество белого карлика окончательно выгорит, он превратится в черного карлика. Черный карлик – это объект, который практически не испускает свет, но недостаточно массивный для того, чтобы стать черной дырой.

Черные карлики – объект гипотетический. Они пока не появились, ведь для их появления нужно свыше 10 триллионов лет. А наша Вселенная существует всего 13,7 миллиарда лет.

Глава 4
Луна – наш спутник

Луна – уникальный объект в Солнечной системе. Ни у одной из планет Солнечной системы нет такого массивного спутника, как у нашей Земли. Земля тяжелее Луны в 80 раз. А, к примеру, Марс тяжелее своего спутника Фобоса почти в 60 миллионов раз!

Сила тяжести на Луне в 6 раз слабее земной. Атмосферы практически нет. Такому небольшому объекту трудно удержать атмосферу, поскольку ее постоянно атакует солнечный ветер. Да и защитного магнитного поля на Луне нет. Однако Луна оказывает важное влияние на нашу планету.

Луна – спутник, как будто идеально созданный для того, чтобы на Земле появилась жизнь. И чтобы жизнь чувствовала себя максимально комфортно. По размеру Луна не больше и не меньше, чем нужно. И находится на удобном для нас расстоянии.

Дело в том, что Луна оказывает дополнительное стабилизирующее воздействие на земную ось. Это означает, что без Луны у нас не было бы настолько стабильного климата: Солнце грело бы то экватор, то Северный и Южный полюса. А именно ровный стабильный климат важен для появления сложных форм жизни. Перефразируя Вольтера, можно сказать, что «если бы не было Луны, ее следовало бы придумать».

Однако Луна с нами, увы, не навсегда. Наш спутник улетает от нас. Когда Юлий Цезарь смотрел на Луну, она была примерно на 80 метров ближе к Земле, чем сейчас. Луна удаляется от Земли со скоростью 3,8 сантиметра в год. Это вполне обычное явление. Когда-то, по одной из гипотез астрофизиков, Меркурий мог быть спутником Венеры, а потом от нее улетел и превратился в отдельную планету.

Через несколько миллиардов лет мы потеряем наш спутник. С другой стороны, землянам будет уже все равно. Как я писал в главе про Землю, в этот момент Солнце будет превращаться в красного гиганта и человечеству придется либо исчезнуть, либо продолжить жить в других звездных системах.

При этом на Луне есть вода! Правда, хранится она тут в виде льда. Залегает он на глубине, потому что на поверхности быстро испарится под воздействием солнечного света. Впрочем, ученые не исключают и наличие льда на поверхности Луны – она может находиться на полюсах. Лунные ледники могут обеспечить водой первых колонистов. А в дальнейшем, возможно, помогут посадить тут растения.

ИНТЕРЕСНЫЙ ФАКТ

На обратной стороне Луны нет равнин или больших участков, куда не падали бы метеориты. Вся поверхность дальней от нас стороны Луны испещрена кратерами.

Во многом это связано с тем, что ближняя сторона Луны была защищена от ударов метеоритов самой Землей. Еще одна гипотеза: Земля дала искажение траекторий метеоритов, после которых они как раз и попали в Луну.

Многие метеориты, которые падали на Луну и образовывали кратеры, до Земли не добрались бы и просто сгорели в атмосфере. Но самый удивительный факт про Луну: когда-то мы с ней обменялись веществом. Точнее, не с ней, а с другим космическим объектом, из-за которого она появилась. Это научная гипотеза еще одной из космических катастроф, которая помогла появиться жизни на Земле.

Видимая стороны Луны. Фото Gregory H. Revera


Обратная сторона Луны. Фото Apollo 16, NASA


4,5 миллиарда лет назад в Землю врезалась планета Тейя

Тейя была одной из планет Солнечной системы размером с Марс, но с меньшей плотностью. В какой-то момент она сошла с орбиты (по другой версии, она делила орбиту с Землей), и планеты столкнулись. Такой сценарий был вполне возможен на заре Солнечной системы. В изложении этой истории я буду опираться на данные американского Института планетологии, откуда я и взял основные факты и цифры.

Хорошо, Тейя столкнулась с Землей. Но возникают два логичных вопроса. Есть ли явные следы воздействия Тейи? Например, какой-нибудь гигантский каньон или мегакратер. Я вот в детстве столкнулся с огромной железякой – и до сих пор у меня шрам на полноги. Не могло же это пройти бесследно для нашей планеты! Второй логичный вопрос: а куда делась Тейя после столкновения? Давайте разберемся.

Остался ли кратер от столкновения земли с тейей

Нет, потому что удар привел к разжижению Земли до самых глубин. Столкновение с планетой – это совсем не то же самое, что удар астероида, который оставляет кратер. Крупные астероиды в диаметре редко превышают десятки километров. А Тейя размером с Марс – это 6800 км в диаметре!

По мнению ученых, после удара Земля какое-то время была окутана гигантским облаком раскаленного пара. Со стороны у нашей планеты были видны кольца, как у Сатурна. У него такое же происхождение колец, и со временем они исчезнут. При такой схеме через 4,5 миллиарда лет не будет никаких следов от столкновения с Тейей.

Есть лишь один важный фактор – тектоника плит. Континенты поэтому и дрейфуют постоянно, что это столкновение нарушило устойчивое положение первого земного материка. Он раскололся – и теперь континенты плавают. Всего у нашей планеты 8 крупных плит и 10 средних, и они находятся в постоянном движении. Аналогичных процессов тектоники плит мы не видим на других планетах. Почему же они есть на Земле? С помощью компьютерного моделирования также подтверждается, что целостная плита раскололась из-за столкновения.

Куда делась Тейя?

Точнее, не Тейя сама по себе, а некий общий с Землей комок вещества, который превратился в наш спутник.

От удара по тогда еще совсем молодой Земле часть вещества испарилась и была выкинута в космическое пространство. А из части оставшегося облака образовалась Луна. Все кратеры, которые мы фиксируем на поверхности Луны, появились гораздо позже столкновения. Большую часть вещества составила Тейя, которая уменьшилась после столкновения. А с Земли был захвачен поверхностный слой магмы. По шагам это могло выглядеть примерно так:

Железное ядро Тейи слилось с ядром Земли. А поверхностное, более легкое вещество улетело. Это хорошо подтверждается химическим анализом грунта Луны и ее плотностью: железа у нее явно не хватает. И это сыграло огромную роль в появлении жизни на Земле. Ведь именно сильное железное ядро нашей планеты экранирует опасное космическое излучение, которое губительно для всего живого.


Луна. Фото из архива Shutterstock


Гипотеза образования Луны из-за столкновения Земли с планетой Тейя. Иллюстрация


Таким образом, Тейя «поделилась» с нами железом, сделав Землю более эффективной и удобной для появления жизни. Ну, а Луне свое магнитное поле не так уж и нужно.

Почему луна всегда повернута к земле только одной стороной

Вы когда-нибудь задумывались, почему Луна всегда повернута к Земле только одной стороной? Ведь это довольно странно, на первый взгляд. Многие небесные тела не только летают по своим орбитам, но еще и крутятся вокруг своей оси. А у Луны период вращения вокруг оси синхронизирован с периодом вращения вокруг Земли. Поэтому мы видим только одну сторону нашего спутника.

Дело в том, что Луна не идеальный шар, она немного вытянута. Если бы Луна была идеальным шаром, период ее вращения вокруг оси не совпадал бы с периодом вращения вокруг Земли. Но поскольку она вытянутая, то устойчивое положение Луны на орбите выглядит так:


Черный овал – Луна в разных положениях. Зеленый круг – Земля. Желтый – траектория, по которой Луна движется вокруг Земли


Если Луна попытается повернуться относительно этого устойчивого положения, силы притяжения стремятся вернуть ее обратно.

Гравитация тянет чуть сильнее за «горбик», который ближе к поверхности Земли. И таким образом возвращает Луну обратно к устойчивому положению. Почему же вытянулась Луна? Почему она не идеальный шар?

Потому что миллионы лет на нее воздействовало притяжение Земли, которое понемногу ее вытягивало. Луна тянет Землю (и меняет ее форму, создавая приливы и отливы) с помощью силы гравитации. Земля аналогично притягивает Луну.

Этот эффект синхронизации периодов вращения небесных тел называется «приливным захватом». До того как Земля взяла Луну в «приливной захват», наш спутник поворачивался и другой стороной.

ИНТЕРЕСНЫЙ ФАКТ

В 1950-е гг. США хотели сбросить на Луну ядерную бомбу. Звучит на первый взгляд как абсурд: кого они намеревались уничтожить на спутнике Земли?

Оказалось, что американцам не давало покоя, что СССР обходит их в космосе. Советский Союз первым искусственный спутник запустил, потом человека в космос отправил. И ВВС США готовили проект: сбросить на Луну ядерную бомбу, чтобы это было видно с Земли. Это должно было напугать СССР и поднять патриотический дух американского народа.

Мощность бомбы была всего 1,5 килотонны. Это в 15 раз меньше, чем атомная бомба «Толстяк», которую сбросили на Нагасаки. Но планировали впечатлить не яркостью взрыва. По расчетам, бомба должна была поднять пылевое облако, которое будет заметно с Земли.

В 1959 году проект закрыли. Главная причина: в 1959 году начал действовать мораторий на ядерные испытания. Испугались, что при запуске может что-то пойти не так и ущерб будет причинен самим американцам. К тому же американцы опасались, что радиоактивное заражение помешает будущей колонизации Луны.

Глава 5
Ресурсы луны. Что из полезных ископаемых можно найти на спутнике земли?

Ресурсы луны. Что из полезных ископаемых можно найти на спутнике земли?

США регулярно заявляет о своих планах наладить на Луне добычу полезных ископаемых. Последний раз это сделал экс-президент страны Дональд Трамп весной 2020 года. Китай и Россия также не скрывают своего интереса к спутнику Земли. Однако стоит ли овчинка выделки? Какие полезные ископаемые есть на Луне?

Для начала сразу отбросим нефть. Она требует органики, а жизни на Луне никогда не было. Минералы же требуют более масштабных геофизических процессов, которых нет на Луне. Поэтому речь пойдет о более простых элементах.

В 2025 году американцы снова хотят высадиться на Луну. В проект будет вложено 35 миллиардов долларов. Впрочем, он постоянно откладывается, а деньги надо отбивать.

Сейчас в отношении космоса действуют правила, принятые ООН в 1979 году. Согласно резолюции ООН, космос является всеобщим достоянием. Даже Зимбабве может претендовать на свой лунный участок. Если сумеет построить ракету, разумеется.

Из чего состоит лунный грунт

Как показали исследования, лунный грунт богат кислородом, из-за этого много элементов существует в виде оксидов. Больше всего в лунном грунте кремния. Этим Луна похожа на Землю: кремний составляет до 30 % и земной коры. Затем идут алюминий и кальций. Алюминий добывать на Луне и привозить на Землю – не самая экономически мудрая идея. Возможно, в будущем алюминий понадобится для организации производства на самой Луне. А пока его можно довольно дешево добывать и тут.

На следующем месте – железо. Из особо ценного – титан. В некоторых частях титана в разы больше, чем в земном грунте. Титан – ценный металл, ведь он сравним по прочности со сталью, только в полтора раза легче. И не ржавеет.

Состав лунного грунта очень близок к земному. Он на 20 % больше насыщен алюминием, чем земная кора. Зато здесь меньше железа. Железо, как мы помним, в большом количестве осталось на Земле после столкновения с Тейей.

Какие полезные ископаемые есть на Луне

Прежде всего гелий. А точнее, изотоп гелий-3. Вот это реально тот элемент, за который стоит бороться. Он необходим для термоядерных реакций.

Если совсем кратко – в будущем атомная энергетика будет работать подобно реакциям на Солнце. Идеальная экология, на выходе – никаких вредных отходов, как сейчас от урана в атомной энергетике.

Всего 0,02 грамма гелия-3 даст столько же энергии, сколько 1 баррель нефти. А 40 тонн этого вещества с лихвой хватит, чтобы обеспечить США энергией на год. Ничего сравнимого по эффекту с таким КПД до сих пор на нашей планете не существовало! Примерный запас гелия-3 на Луне – 10 миллионов тонн. Хватит, чтобы США были обеспечены энергией на 250 тысяч лет. Аналогичные оценки для России – примерно 20–30 тонн.

Одна проблема: гелий-3 получается довольно дорогой. У нас он быстро рассеивается из-за атмосферы. А на Луне гелий-3 накапливается миллиарды лет. Собирается он из солнечного ветра. Содержание гелия в лунном грунте примерно в 100 раз больше, чем на нашей планете.

Кроме нехватки гелия-3, нет еще и термоядерных электростанций. Пока все реакции проходят в лабораторных условиях. Но, скорее всего, создание термоядерной энергетики – дело недалекого будущего.

Могут ли быть на луне драгоценные металлы?

Могут. Хотя залежей и не нашли. Но здесь нужно сказать пару слов о том, откуда берутся драгоценные металлы.

Золото, платина и вообще все, что в таблице Менделеева тяжелее железа, не может появиться в недрах планеты или даже звезды. Такие металлы рождаются только во время столкновения крупных звезд, взрывов сверхновых и в процессе образования нейтронных звезд. И после этого метеориты, как брызги после взрыва, разносят эти материалы по всей галактике.

Как мы уже говорили, 4 миллиарда лет назад Землю буквально расстреливали метеоритами, которые и принесли много ценных элементов. Луне тоже регулярно достается, поэтому с уверенностью можно сказать: что-то из драгоценных металлов там с высокой долей вероятности найдут. С другой стороны, затраты по добыче точно не окупятся, в отличие от перспективного гелия-3.

Как еще можно использовать луну

Другие полезные варианты использования нашего спутника – дело среднесрочной перспективы. В ближайшие десять лет – вряд ли, а до конца века – весьма вероятно. Итак, что еще можно сделать полезного в рамках колонизации Луны?

Энергия. Ее тут много! Пожалуй, самое главное – это энергетика. И это даже если отбросить пока полуфантастический сценарий с гелием-3. Просто на Луне идеальная дешевая солнечная энергия. Ведь солнечные лучи здесь не блокируются атмосферой и магнитным полем Земли.

Производство. В сочетании с дешевой энергией здесь нет кислорода в виде газа в атмосфере. Весь кислород мертвым грузом лежит в лунном грунте. А кислород из-за окисления часто вредит производству. Особенно сложно производить микросхемы и сверхчистые сплавы. Приходится возиться с каждым элементом и выпускать их небольшими порциями, а на Луне – идеальные условия для производства в промышленных масштабах.

Наука. Здесь можно размещать научные базы. Наблюдать за космосом из лунных обсерваторий эффективнее, чем с земных, – не мешает атмосфера.

Атмосфера и магнитное поле Земли выступают в роли экрана, который защищает нас от опасной космической радиации. Однако именно этот экран также поглощает и рассеивает существенную часть электромагнитных волн. Поэтому ученым может быть очень полезен радиотелескоп, построенный на обратной стороне Луны, чтобы снизить эффект экранирования Земли.

Многие объекты, которые слабо излучают, – например, молодые звезды на ранней стадии развития, – с Земли практически не видны. Атмосфера блокирует инфракрасное излучение, которое идет от молодых звезд. А с Луны все они будут прекрасно видны!

Луна даже сейчас, когда нам трудно до нее добраться, является ценным источником информации о космосе. К примеру, лунный грунт миллиарды лет впитывал в себя частицы солнечного ветра. И когда его образцы привезли на Землю, это был ценнейший материал. Так мы смогли изучить, что представляет собой солнечный ветер (а также почему он настолько опасен).

Основная же роль научных баз на Луне – изучать непосредственно спутник нашей планеты.

Тренировка. Условия Луны идеально подходят для отработки схемы будущей экспансии. Ведь в будущем нам необходимо осваивать другие планеты. А Луна станет хорошим полигоном. Здесь можно проводить тренировки космонавтов, выращивать первые «космические» растения. Конечно, многое из этого делается и на МКС, но условия на Луне будут гораздо ближе к марсианским. Ну, или любым другим – ведь впереди у человечества много интересных экзопланет, которые надо освоить!

Так что побороться за освоение Луны точно стоит! Только, на мой взгляд, странно это делать политическим путем, пытаясь протолкнуть интересы одной страны. Космос – общий, и исследовать его стоит вместе. От коллективного освоения космоса, объединив все ресурсы, мы только выиграем.

ИНТЕРЕСНЫЙ ФАКТ

Почему все планеты названы в честь римских богов, а Уран – в честь греческого?

Уран имеет необычное название. Остальные планеты Солнечной системы названы в честь римских божеств, но Уран (греч. Οὐρανός) – нет. Планета была названа в честь греческого бога, а не его римского «коллеги» Целуса.

Уран – древнегреческий бог, олицетворяющий небо, супруг Геи (Земли). Породил титанов, нимф, циклопов и т. д. Первый правитель мира и в целом странноватый персонаж. Детей своих не любил, считал страшными уродцами и отправлял назад в утробу Геи. В римской мифологии его называли Целусом: он был отцом Сатурна, а также считался живым воплощением неба.

Планеты Меркурий, Венера, Марс, Юпитер и Сатурн были известны с древних времен. Названия они получили от древних римлян, которые ассоциировали планеты со своими божествами. А вот история открытия Урана в астрономии уникальна. Древние римляне не знали, что Уран – планета, поэтому и не стали называть именем своего божества.

Уран – очень тусклая планета, которая к тому же очень медленно вращается вокруг Солнца. Полный оборот Уран совершает за 84 земных года. Греческий астроном Гиппарх во II веке до н. э. наблюдал Уран, но думал, что это звезда. Так и обозначил его – как неяркую и далекую звезду. И забыл.

Открыл Уран британский астроном Уильям Гершель в 1781 году. Тогда это открытие всю общественность привело в восторг: это было первое открытие планеты в Новое время. Появилось предложение – назвать планету Нептун. Но Гершель высказался против, отметив, что не стоит делать так, как поступали в «древние сказочные времена». Гершель решил назвать открытую планету в честь британского короля Георга III. Король его тут же наградил, однако потребовал, чтобы сперва Гершель приехал с телескопом в его резиденцию, чтобы Георг мог лично убедиться в открытии.

Гершель убедил всех, что дело не в попытке польстить монарху. Он заявил, что называть планету по древнеримскому сценарию – например, Минервой (римский вариант Афины), Дианой (римская Артемида) или Юноной (римская Гера) – это анахронизм. А так благодаря названию все будут помнить, когда была открыта планета и когда правил король Георг III (как будто много людей в мире сейчас помнят, когда именно он правил).

Лемюэль Эббот. Портрет Уильяма Гершеля. 1785 г.


Так планету и назвали: Георгиум Сидус (планета Георгия) – в честь великого короля Соединенного Королевства Георга III. Но людям за пределами Британии такое название совсем не понравилось. Французский астроном Жозеф Лаланд предложил назвать планету Гершель – в честь первооткрывателя.

Немецкий астроном Иоганн Элерт Боде первым предложил название Уран – по принципу соответствия классической культуре. В классической мифологии Сатурн был отцом Юпитера. А следующую планету надо назвать именем отца Сатурна, то есть Ураном. Боде был хорошим астрономом, но слабо разбирался в мифологии и путался в названиях. В римской мифологии отцом Сатурна является Целус. Это калька с греческой мифологии, где отцом Кроноса является Уран.

Название Уран приживалось целый век. Дольше всего не сдавались британцы, называя свою планету Георгом. Ну а в XIX веке открыли Нептун. Он стал первой планетой, открытие которой было предсказано с помощью математических расчетов. Ученые обнаружили неожиданные изменения орбиты Урана. И связали это с гравитационным влиянием еще одной крупной планеты, которой и оказался Нептун.

Немецкий астроном Иоганн Готфрид Галле, который впервые увидел планету, хотел назвать ее Янусом. Однако научная общественность отдала пальму первенства французскому математику Урбену Леверье, который математически предсказал существование новой планеты. А математик, продолжая классические традиции, назвал планету Нептуном.

Глава 6
Юпитер – несостоявшаяся звезда и защитник земли

Почему Юпитер получился таким большим? Его масса почти в 2,5 раза больше, чем масса всех планет нашей Солнечной системы вместе взятых.

Юпитер начал образовываться раньше других планет Солнечной системы, поэтому успел собрать максимум массы.

У него гигантская магнитосфера. Ученые считают, что это потому, что его ядро состоит из металлизированного водорода. 89 % в составе Юпитера – это водород, и 10 % – гелий.

Остальное – это другие соединения, такие как метан, аммиак и т. д.

Сколько весит человек на Юпитере

Передвигаться по Юпитеру при его большой гравитации было бы очень трудно. Здесь вес объекта будет в 2,5 раза выше, чем на Земле. Поэтому человек весом 70 килограммов на Юпитере будет весить 175 килограммов!

Когда я выступал с лекциями и рассказывал о Юпитере, в аудитории всегда находился любопытный слушатель, у которого возникал вопрос: почему вес тела на Юпитере будет всего в 2,5 раза больше, если его масса аж в 319 раз больше массы Земли?

Здесь вступает в силу классическая путаница понятий «масса» и «вес». Это на Земле мы живем в условиях одинаковой гравитации (да и то есть зависимость от высоты над уровнем моря). У Юпитера же и объем намного больше земного. А как мы помним из школьного курса физики, сила гравитации зависит не только от массы, но и от расстояния.



G – гравитационная постоянная, которая равна 6,67⋅10–11 м³/(кг·с²),

m1 и m2 – массы объектов, между которыми действует сила притяжения.

А вот в знаменателе – расстояние в квадрате. Чем оно больше, тем гравитация меньше.

Земля – более плотный и компактный объект, чем Юпитер. Поэтому ускорение свободного падения на Юпитере составляет всего 2,535 g.

Формула веса выглядит так:

P = mg

Если мы хотим узнать, какой вес будет у человека на Юпитере, подставляем известную массу и умножаем на 2,535. Получается, что 100-килограммовый объект здесь будет весить 253,5 кг.

Юпитер мог бы стать звездой. А стал защитником земли

Так выглядит шторм на Юпитере. Фото NASA/JPL–Caltech/SwRI/MSSS/Gerald Eichstädt


ИНТЕРЕСНЫЙ ФАКТ

Интересный факт. Как вы помните, у Юпитера есть характерное большое красное пятно. Но знаете ли вы, что это такое? Это огромная область высокого давления в атмосфере Юпитера. И в этом месте бушует самый мощный шторм в нашей Солнечной системе. С Земли в телескоп он и выглядит как красное пятно. И этому шторму уже как минимум 356 лет! Штормы на Юпитере могут длиться веками. И размах у них на порядок больше, чем на Земле.

Однако сейчас красное пятно Юпитера резко сужается. В XIX веке, когда за ним начали активно наблюдать, пятно было в 3 раза больше. Сейчас ширина пятна составляет 16 350 километров, что в 1,3 раза больше Земли. Скорость ветра здесь достигает 432 км/ч.

Юпитер называют «неудавшейся звездой». У него был шанс стать красным карликом, как Проксима Центавра. Юпитер себя ведет в какой-то степени подобно звезде: он излучает. Конечно, каждая планета имеет свой спектр излучения, но Юпитер излучает на 60 % больше энергии, чем получает от Солнца. Идут химические реакции внутри планеты и гравитационное сжатие. Поэтому Юпитер излучает преимущественно в инфракрасном диапазоне. Излучение не проходит бесследно: Юпитер уменьшается на 2 сантиметра в год. По оценкам астрофизиков, на заре Солнечной системы Юпитер был в два раза больше и его температура была значительно выше. Если бы Юпитеру удалось собрать массу в четыре раза больше, из него могла бы получиться звезда, которая в дальнейшем притянула бы еще больше массы. Однако это была бы не обычная звезда типа Солнца, а скорее красный карлик. Зато мы имели бы на небе сразу две звезды, потому что Солнечная система превратилась бы в систему двойных звезд.

Юпитер – как старший брат Земли. За счет большой массы он собирает в себя множество комет и метеоритов, которые могли бы угрожать Земле. Поэтому не стоит расстраиваться, что Юпитер так и не стал звездой. Тогда бы он, напротив, мешал нам и сдвигал орбиту. Орбиты планет в «жилой» зоне в системах двойных звезд обычно нестабильны, потому и жизнь там маловероятна. А в нынешнем виде Юпитер – наш мощный защитник. Ему нипочем сотня-другая астероидов, а жизнь на Земле он спасает сотни миллионов лет.

На этом мы закончим главу об объектах Солнечной системы. У вас может возникнуть резонный вопрос: а как же Венера и Марс? Ведь это очень интересные планеты, которые потенциально можно колонизировать! И они так похожи на нашу Землю. Все верно, поэтому к ним мы обязательно вернемся в главе, посвященной будущей колонизации других планет.

Часть II
Вселенная

Как и в предыдущей части, изучение Вселенной мы начнем с нашего дома – галактики Млечный Путь.

Глава 7
Млечный путь

Мы много говорим о будущем освоении космоса, но пока слабо представляем себе даже родную галактику. Наш уровень знания космоса даже ниже, чем представления о географии Земли в доколумбовую эпоху. И все-таки человечество накопило про Млечный Путь порядочный пласт информации.

Наша галактика – удивительное место, вместилище самых разных звезд, сверхновых, туманностей, черных дыр и загадочной темной материи.

Млечный путь находится на пустыре во Вселенной

Наша Вселенная чем-то напоминает город – со своими кварталами, ярким, искрящимся разными огнями центром. Если принять эту аналогию, то наш Млечный Путь – это пригородный квартал: находится далеко от основных событий, до него нужно ехать на электричке, а потом еще топать через лес. И поверьте, это прекрасно! В центре нашей галактики очень тесно, гораздо чаще сталкиваются звезды. В таких катастрофах гибнет не только все живое, но и целые планеты. Что уж говорить о маленькой Земле…

Диаметр нашей галактики – 100 тысяч световых лет. Мы же находимся в 20 тысячах световых лет от края галактики. По пропорциям, если бы Млечный Путь был Москвой, Солнечная система находилась бы в Перово или Царицыно. Световой год часто путают с единицей измерения времени (очевидно, влияет слово «год»). На самом деле световой год – это единица измерения длины. Такой путь пройдет свет со скоростью около 300 тысяч километров в секунду за год. Световой год примерно равен 9,4 триллиона километров. Звучит как какая-то гигантская, недостижимая и непостижимая цифра. Однако расстояния между звездами, как правило, равны нескольким световым годам. Самая близкая к Земле звезда – Альфа Центавра. Расстояние до нее – примерно 4,4 световых года. Столько требуется свету, чтобы проделать путь до нас. И сейчас мы видим эту звезду, какой она была, соответственно, 4,4 световых года назад. Увы, мы никогда не сможем узнать точно, как какой-либо космический объект выглядит прямо сейчас.

Солнечная система путешествует по Млечному Пути так же, как Земля вращается вокруг Солнца. Полный оборот вокруг центра Млечного Пути Солнце вместе с планетами делает примерно за 226 миллионов лет. Это называется галактическим годом.

ИНТЕРЕСНЫЙ ФАКТ

Как ученые понимают, из чего состоят далекие звезды и галактики? Как можно с помощью телескопа оценить состав небесных тел? Ну, видим мы звезду. Как мы понимаем, что в ней водород и гелий, а не, скажем, раскаленное жидкое золото?

На помощь ученым приходит метод спектрального анализа. Атом каждого химического элемента испускает и поглощает волны определенного диапазона. Данные по каждому химическому элементу давно собраны. Приборы на Земле улавливают эти волны. Ученые сравнивают полученную картину с земным шаблоном. Делают поправки на «красное смещение» и т. п., с учетом дальнего расстояния. И понимают, какое вещество есть в составе той или иной звезды и в каком объеме.

Голодный монстр в центре галактики

В центре Млечного Пути находится настоящий монстр – массивная черная дыра весом 4 миллиона солнц, которая захватывает огромные объемы вещества вокруг. Хотя самого монстра ученые не видят, но это легко отследить по косвенным признакам. Звезды в центре Млечного Пути вращаются вокруг сверхмассивного объекта. Со временем многие притягиваются к нему и исчезают в его пучине (важный аргумент не жить в центре галактики).

В центре нашей галактики звезды вообще расположены очень плотно – в сотни раз ближе друг к другу, чем в окрестностях Солнца. Если где-то там есть жизнь, то она не знает, что такое ночь. Если скрылась родная звезда, то звездное небо даже ночью будет достаточно ярким.

Что увидят инопланетяне, если посмотрят на землю с другого конца галактики?

Представьте себе гипотетическую картину. На другом конце нашей галактики есть инопланетяне, которые создали высокотехнологичный телескоп. Что они увидят, если посмотрят на Солнечную систему и Землю? Солнечная система расположена ближе к периферии галактики. До противоположного конца от нас примерно 80 тысяч световых лет. А значит, взору инопланетян открылись бы события, которые происходили на Земле в то время. Это был пик Ледникового периода. Homo sapiens в современном виде только-только появился. Наши предки кроманьонцы еще не выбрались из Африки. До их конфликта с неандертальцами и начала экспансии в Европу остается еще 30 тысяч лет.

А что же инопланетяне? Они сделают вывод, что ничего серьезного на Земле не происходит. Возможно, пометят ее как еще одну «планету, пригодную для жизни». И продолжат считать, что они одиноки во Вселенной.

Возможно, и мы, когда смотрим в телескоп, видим пустоту. А за десятки тысяч лет инопланетные расы развились и уже вовсю осваивают новые звездные системы. Что ж, скоро узнаем. Осталось подождать каких-нибудь 80 тысяч лет.

Мы не знаем, сколько именно звезд в Млечном Пути

Ну, это не удивительно. Мы даже не знаем, сколько именно людей живет в Москве, что уж говорить о галактике!

Как многие приезжие успешно прячутся от переписи населения, так и слабые звезды уходят от бдительного взора астрономов. По сути, мы видим только самые яркие звезды в нашей галактике. Очень много звезд почти не испускают света, некоторые скрыты газом и пылью.

Поэтому астрономы не доверяют только телескопам, а пытаются сосчитать звезды через физические характеристики. Например, через массу галактики, которую можно высчитать по скоростным характеристикам.

Но эти оценки все равно являются приблизительными. Спутник Gaia Европейского космического агентства составил карту с 1 миллиардом звезд Млечного Пути. По мнению ученых, это менее 1 % от реальной картины и в нашей галактике – 200–400 миллиардов звезд. Ответ, скорее всего, мы узнаем только в эпоху Нового Колумба, когда сможем свободно путешествовать по галактике.

Сколько весит млечный путь

Оценка тоже будет очень приблизительной. Астрофизики из Университета Аризоны оценили массу нашей галактики в 1–2 триллиона масс нашего Солнца.

Бóльшая часть – до 85 % – приходится на так называемую темную материю. Что это такое, пока непонятно, так как она не излучает свет и зафиксировать ее невозможно. Это может быть как совокупная масса «всего не яркого» – то есть черные дыры, газ, пыль и т. п., – так и принципиально новый вид вещества.

ИНТЕРЕСНЫЙ ФАКТ

Думаете, что на фото на с. 70 на самом деле наша галактика Млечный Путь?

У нас нет реальных фотографий нашей галактики. Мы пока – даже на уровне небольших космических аппаратов – не смогли покинуть пределы галактики, чтобы ее сфотографировать. Большинство фотографий на самом деле относятся к другой спиральной галактике из созвездия Рыб, которая называется Мессье 74.

М 74 (Messier 74), спиральная галактика. Фото NASA/ESA


Наша галактика насыщена токсичными жирами

Между звездами в нашей галактике летают скопления жира. Это масляные органические молекулы, известные в химии как алифатические углеродные соединения. В химии это соединения жирного ряда, подобные смолам. Они образуются у некоторых звезд.

Ученые считают, что 30 % межзвездного углерода, наполняющего космическое пространство, может состоять именно из этих жиров.

А углерод, в свою очередь, – важный строительный материал для клеток живых существ. Раз его так много в галактике – значит, и вероятность, что где-то еще есть жизнь, не так уж мала.

Наша галактика испускает таинственные пузыри

Эти загадочные объекты открыли всего 9 лет назад. Перпендикулярно диску нашей галактики из нее испускаются два гигантских пузыря. Ученые назвали их пузырями Ферми – в честь телескопа, который их обнаружил. Без специальных устройств их не увидеть – они испускаются в гамма-излучении.

Что это такое, до конца неясно. Вероятнее всего, это было какое-то мощное энергетическое событие – взрыв нескольких сверхновых. И тогда сверхмассивная черная дыра в центре галактики поглотила огромные скопления газа и пыли. А пузыри – энергетический след этого события.


Гамма-рентгеновские пузыри Ферми. Иллюстрация Goddard Space Flight Center, NASA


Что находится на краю млечного пути

Границы Млечного Пути размыты. Пока ведутся дискуссии, где именно находится его край. Галактики не заканчиваются просто так, резко обрываясь. Звезды просто встречаются все реже и реже, пока совсем не исчезают.

Однако если говорить о нашей Солнечной системе, мы находимся ближе к периферии Млечного Пути. Что, как уже было сказано, к лучшему: нет такого массового скопления вещества и звезд (а с ним – и опасностей столкновений, взрывов сверхновых, притяжения черных дыр и т. п.), как в ядре галактики. За краем Млечного Пути – разреженное пространство. И у нас есть четыре ближайших соседа.

Андромеда. Ближайший крупный сосед Млечного Пути. Она намного крупнее нашей галактики. В ней как минимум в три раза больше звезд. Андромеда летит в нашу сторону, и через несколько миллиардов лет наши галактики встретятся.

NGC 2419 – шаровое скопление в созвездии Рысь. Второе его название – Галактический Бродяга. Так его прозвали за то, что обычно подобные скопления находятся ближе к ядру Млечного Пути, а Галактический Бродяга вращается вокруг нашей галактики по длинной орбите, для полного оборота по которой требуется до 3 миллиардов лет.

Большое и Малое Магеллановы Облака. Это карликовые галактики, которые притягиваются Млечным Путем. Наша галактика поглотит их ориентировочно через 4 миллиарда лет.

Будущее Млечного Пути прочно связано с этими соседями.

Наши спутники. Большое и малое Магеллановы Облака

Вокруг Млечного Пути вращаются небольшие галактики. Их можно увидеть невооруженным глазом, как это сделал когда-то Фернан Магеллан в XVI веке. Он приметил несколько круговых скоплений звезд, которые потом в честь него и назвали Малым и Большим Магеллановыми Облаками. Эти маленькие галактики – спутники нашего Млечного Пути. Со временем они сольются с нашей галактикой и станут ее частью.

Магеллановы Облака имеют в своем составе более молодые звезды, чем Млечный Путь. Да и содержание тяжелых элементов в них ниже. Млечный Путь в далеком прошлом поглощал другие галактики. Процесс поглощения более крупными более мелких – норма в природе, как в живой, так и неживой.

Млечный Путь тоже собирался в большую галактику постепенно, по дороге захватывая карликовые скопления звезд. Одной из таких поглощенных галактик является Омега Центавра. Ученые пришли к выводу, что это скопление возникло не случайно, а является ядром галактики, которую когда-то поглотил наш Млечный Путь. Вероятнее всего, в центре Омега Центавра находится черная дыра, как это традиционно бывает во многих галактиках.

Но самый интересный факт про нашу галактику находится в далеком будущем. Ведь Млечный Путь завершит свой путь (простите за каламбур!) красивейшей космической катастрофой.

Млечный путь столкнется с соседом через 4 миллиарда лет

Помните, я писал, что наша галактика – это пригородный квартал? Вспомните, как быстро расширяется Москва, как далекие прежде дачные поселки теперь застраиваются небоскребами. Так и в космосе. Сейчас идет сближение галактик Млечный Путь и Андромеда. Наш сосед – та самая туманность Андромеды, один из немногих объектов за пределами нашей галактики, который мы можем увидеть невооруженным взглядом.

Ничто не вечно в нашем мире, и ночное небо – не исключение. К нам навстречу с бешеной скоростью летит галактика Андромеды. Через 2 миллиарда лет в ночном небе она будет светить ярче нашей Луны.

А через 4 миллиарда лет случится большая космическая катастрофа – две галактики столкнутся. Со всеми вытекающими. То есть многие звезды столкнутся друг с другом, будут взрывы, в межзвездное пространство выплеснутся триллионы тонн материи.

После крушения более массивная галактика Андромеды поглотит Млечный Путь. По оценкам астрофизиков, Андромеда в 3–5 раз больше нашей галактики. Выше уже было отмечено, что в космосе, как в жизни: более крупные, как правило, поглощают более слабых и мелких.

Андромеду можно увидеть и сейчас. Это та самая «Туманность Андромеды», которая фигурирует в нашей литературе и кинематографе. Почему туманность? Потому что персидские астрономы, которые впервые ее обнаружили, описали Андромеду как небольшое облачко. Небольшое… пока что. Но все изменится в течение каких-нибудь двух миллиардов лет.

То, что Андромеда – не туманность, а галактика, ученые узнали совсем недавно. В 1924 году это открыл астроном и космолог Эдвин Хаббл – тот самый, в честь которого назвали знаменитый телескоп. В дальнейшем стало понятно, что галактика Андромеды – не простой сосед. Наша галактика Млечный Путь и галактика Андромеды летят навстречу друг другу с огромной скоростью. И через 4 миллиарда лет наши галактики столкнутся. Вследствие космической катастрофы образуется новая, громадная галактика.

Итак, Андромеда поглотит Млечный Путь, но не все так страшно. Астрофизики посчитали, что с учетом больших расстояний между звездами большинство из них не столкнется. Звезды просто перемешаются, и получится более плотная и крупная галактика.

Ночное небо через 2 миллиарда лет с Земли будет выглядеть примерно так:



Луна, в свою очередь, будет удаляться от Земли и уменьшаться в размерах. Луна отдаляется от Земли примерно на 4 сантиметра в год. Значит, через 2 миллиарда лет она отлетит от Земли почти на 80 тысяч километров. Это 20 % от нынешнего расстояния между Землей и Луной.

Недавно специалисты NASA смогли зафиксировать аналогичную катастрофу, которая произошла в других галактиках. Это позволит нам в реальном времени изучить события, которые ждут в будущем наш Млечный Путь. Странную галактику уловил космический телескоп «Хаббл». Она образовалась в результате слияния двух галактик, которые столкнулись друг с другом.

Речь идет о галактике NGC 1614 (меня всегда удивляло, какие скромные имена получают интереснейшие космические объекты. Как будто заключенные в тюрьме получают номера). Впервые ее обнаружили астрономы еще в 1885 году, но изучить галактику детально удалось только сейчас.

У этой галактики образовался длинный хвост, который тянется от центра. Издалека она напоминает головастика. Хвост – поток межзвездного газа и отдельных звезд от меньшей галактики, которая столкнулась с более крупной.


Спиральная галактика NGC 1614. Фото NASA/ESA


Что ждет Солнечную систему после столкновения галактик? Возможно, что ничего страшного. Межзвездные расстояния велики, и большинство звезд после столкновения галактик просто перемешаются. Солнечная система находится на периферии Млечного Пути. Поэтому, скорее всего, так и останется на обочине галактики – только уже намного более крупной.

Согласно расчетам астрофизиков, есть вероятность в 12 %, что Солнечную систему выбросит за пределы новой галактики. Улетит в таком вот хвосте, как у «головастика» NGC 1614, а затем и в принципе отправится в путешествие в открытом космосе.

Но для жизни на Земле это уже не будет иметь значения. Как вы прекрасно помните из первой главы, Солнце к тому моменту станет красным гигантом и поглотит нашу планету. Поэтому самое время будет переселиться на другие. Например, на те, что находятся в новой галактике – Андромеде. И уже оттуда наблюдать за судьбой нашей родной звезды.

Наблюдая за галактикой NGC 1614, ученые NASA полагают, что самый вероятный сценарий катастрофы – образование новой мегагалактики. Большинство звезд перемешается. Часть вылетит прочь из галактики. А мощные столкновения будут лишь в эпицентре, где сольются ядра галактик.

Глава 8
Химики вселенной. Почему умирающие звезды называют сверхновыми

Сверхновые – интересные объекты, которые влияют на химическую эволюцию наших галактик. Крупные звезды, которые массивнее нашего Солнца, заканчивают жизнь яркой вспышкой, которая и называется сверхновой.

Взрывы сверхновых человечество наблюдало не раз. Одну из самых известных сверхновых наблюдали в 1054 году, об этом сохранилось много информации, записанной арабскими и китайскими астрономами. Сверхновая была видна даже днем. А ночи из-за нее были намного светлее. Длилось это 23 дня. При этом сверхновая расположена от нас очень далеко – на расстоянии в 6500 световых лет! Мы и сейчас видим последствия этого события – в этом месте образовалась Крабовидная туманность.

Последний взрыв сверхновой, который было видно невооруженным глазом, люди наблюдали в 1604 году. Это была вспышка в созвездии Змееносца, ее описал знаменитый астроном Иоганн Кеплер.

Сверхновые в большом количестве появляются каждый день по всей Вселенной. Только видны они лишь астрономам. Для человечества очень хорошо, что взрывы сверхновых происходят далеко. Если бы взорвалась одна из соседних звезд, это могло бы привести к гибели живого на нашей планете из-за сильной радиации. Но все массивные звезды, которые могут взорваться как сверхновые, находятся очень далеко от нас.

Парадокс, что фактическую гибель звезды называют сверхновой, но это связано с историей исследования звезд. Когда на небе в «пустом» пространстве, где ничего раньше не было, загоралась звезда, ее называли новой звездой. Автор названия – астроном эпохи Возрождения Тихо Браге, который детально описал такую вспышку. Когда неожиданно в небе начинает ярко-ярко гореть звезда – она затмевает все остальные. Поэтому ее назвали сверхновой.

На самом деле объекты там, конечно, были. Вспышка происходила не в пустоте. Просто далекие звезды с оборудованием XVII века разглядеть было трудно. До взрыва объект представляет из себя красного гиганта. После взрыва он сбрасывает оболочку. В звезде выгорает бóльшая часть вещества, и она уже не может поддерживать баланс. Оболочка улетает в космос на огромной скорости. В дальнейшем в этом месте образуется туманность. В более редких случаях так взрываются белые карлики. Как правило, это происходит в системах двойных звезд.

Оставшееся ядро звезды начинает сжиматься. В зависимости от массы первоначальной звезды получится один из двух объектов: либо нейтронная звезда, либо – если масса превышает 40 солнц – черная дыра.


Так может выглядеть Бетельгейзе с поверхности одной из своих планет. Иллюстрация


Следующий взрыв в Млечном Пути, как ожидают астрономы, произойдет в созвездии Ориона. Взорваться должен старый красный гигант – Бетельгейзе. Произойти это событие может в любой момент. Хотя большинство астрофизиков считают, что у Бетельгейзе в запасе все-таки есть несколько миллионов лет.

Химическая эволюция вселенной

Ну а для нас сверхновые имеют огромное значение, ведь они отвечают за химическую эволюцию галактик. Выбрасывают вещество, в котором заложена вся таблица Менделеева.

Взрывы сверхновых – основной источник пополнения меж-звездной среды элементами, которые тяжелее гелия. Они образуются в недрах звезд в результате термоядерных реакций и после взрыва вылетают в космос.


Золото – драгоценный металл, из-за которого сломано так много копий, – когда-то образовалось в недрах массивных звезд и разлетелось по всей галактике


Без сверхновых концентрация на Земле важных для нас элементов – от кислорода и углерода до железа и золота – была бы на порядок ниже. Причем если первые два еще относительно распространены, то подавляющее большинство тяжелых металлов – это остатки после взрывов сверхновых.

ИНТЕРЕСНЫЙ ФАКТ

За всю историю человечества было добыто 166,5 тысяч тонн золота.

Бóльшая часть – 50 % – была направлена на изготовление ювелирных изделий, 12 % – на технические нужды. Если сложить все добытое золото, то получится куб со сторонами 20,5 метра. Не так уж много. А сколько человек полегло в битвах за этот дефицитный металл!

Золото не образуется в недрах земли. Все золото на нашей планете имеет космическое происхождение. Оно образуется в недрах массивных звезд и разносится по галактикам после того, как звезды взорвутся как сверхновые.

Столкновение нейтронных звезд – также один из распространенных путей появления драгоценных металлов во Вселенной, как считал Стивен Хокинг. В этот момент выделяется огромное количество энергии, что приводит к образованию тяжелых элементов, которые после взрыва разбрасываются по космосу.

Также сверхновые стимулируют звездообразование, пополняя запасы межзвездного газа. Для появления жизни в галактике должны образовываться новые звезды. Процесс должен быть постоянным. С элементами таблицы Менделеева мы разобрались. Но из золота жизнь не возникнет. Откуда жизнь берет строительный материал? Оказывается, во Вселенной много органики!

Органическая основа для жизни. Что нашли ученые в метеорите, который на 3 миллиарда лет старше Земли

С неживой природой все более или менее ясно. А как обстоят дела с органикой? Как оказалось, органического вещества во Вселенной довольно много. Ученые регулярно находят следы органических веществ на метеоритах.

Мурчисонский метеорит – один из самых древних, когда-то падавших на нашу планету. В его составе ученые нашли много любопытного. И это логично – ведь метеорит существовал еще до появления Солнца. Самое интересное из того, что было в метеорите, – множество органических соединений. За это ученые прозвали его «самым живым» метеоритом. Вещество, входящее в состав метеорита, образовалось 4,5–7 миллиардов лет назад. Значит, в его составе есть элементы, которые на 3 миллиарда лет старше нашей планеты!


Фрагмент Мурчисонского метеорита. Фото из архива Shutterstock


Вероятно, в истории Земли были и более древние метеориты. Но большинство из них упали на нашу планету на заре ее существования, когда у Земли еще не было мощной атмосферы. Да и планета была раскаленной и с более жидкой консистенцией. Метеоритное вещество, таким образом, проваливалось в нижние слои.

Мурчисонский метеорит упал 28 сентября 1969 года в Австралии, вблизи деревни Мурчисон неподалеку от Мельбурна. Метеорит весил свыше 100 килограммов, но раскололся при падении на множество фрагментов.

Метеорит был известен давно, но ученые смогли полноценно исследовать его только в последние годы: в XX веке лабораторных мощностей не хватало для столь детального анализа.

Основа метеорита – так называемые досолнечные реликты (второе название – досолнечные зерна). Это частицы минералов, которые собирались вокруг умирающих звезд еще до появления Солнечной системы. Состоят частицы в основном из карбида кремния. Это старейшие твердые вещества на Земле.

Семь миллиардов лет назад в нашей галактике происходило интенсивное звездообразование. К моменту появления Солнца, 4,57 миллиарда лет назад, процесс бурного образования звезд уже начал угасать. Изотопный состав частиц указывает на то, что они остались после взрыва сверхновой. Это была звезда с массой примерно в 25 раз больше нашего Солнца.

Международная команда ученых во главе с Йосихиро Фурукавой из Университета Тохоку детально изучила состав метеорита. Всего было найдено 14 тысяч различных органических соединений. Самые интересные из них – аминокислоты и органические вещества, входящие в состав ДНК и РНК. Разберем их подробнее. В метеорите удалось обнаружить свыше 70 аминокислот. В частности, он содержал аланин, глицин, валин, лейцин, изолейцин, пролин, которые часто встречаются в белках на Земле.

Если вы когда-нибудь увлекались спортом и спортивной диетологией, то сразу поймете, сколько полезного было в этом метеорите. Такое ощущение, что это просто инопланетный атлет сделал заказ из магазина спортивного питания на свою какую-нибудь Альфа Центавру (по меркам космоса – подъезд по соседству от нас). Метеоритный курьер запутался и принес не туда, а на нашу Землю.

Глицин (аминоуксусную кислоту) многие покупают в аптеках как успокаивающее перед сном и для улучшения памяти. Глициновые рецепторы находятся в большом количестве в головном и спинном мозге. Он оказывает тормозящее воздействие. Это простейшая стабильная аминокислота, которой много в органических тканях. Глицин также регулярно находят в межзвездной среде.

Найденные аминокислоты – незаменимые кирпичики для появления жизни. Дальнейшие исследования космоса показали, что в нашей галактике много подобных соединений. А значит, существует вероятность возникновения жизни на других планетах. Однако и это еще не все. Кроме аминокислот, в составе метеорита обнаружены пурины и пиримидины. Они входят в состав нуклеотидов и нуклеозидов, которые являются важными структурными элементами ДНК и РНК, а также входят в состав источника энергии – АТФ.

Философ-позитивист Огюст Конт в 1835 году сказал: «Наука – это прекрасно! Но вы никогда не узнаете, из чего состоят Солнце и звезды». Прошло 25 лет, и немецкие физики Роберт Бунзен и Густав Кирхгоф изобрели первый спектрометр. С помощью спектрального анализа можно разложить свет звезд и понять, какое вещество его испускает. А значит, узнать, из чего состоят звезды. Люди узнали и были поражены: у звезд то же самое вещество, что есть и на нашей Земле! И действуют те же законы физики.

То же сейчас происходит и с органикой. Это не прерогатива нашей планеты. Органических соединений очень много во Вселенной. А значит, высока вероятность, что где-то еще, на других планетах, им выпал шанс соединиться в причудливую форму под названием «жизнь».

«Сладкий» метеорит

В 2019 году на метеорите впервые нашли сахар. И это не рафинад. Не подумайте, не то чтобы какой-то инопланетянин захотел попить чайку, а тут – бац – люди! Впопыхах убежал и сахар рассыпал. Речь идет об углеводных соединениях, которые называются сахарами и входят в состав в том числе ДНК и РНК. А значит, являются одним из базовых элементов органической жизни.

Группа ученых из Японского агентства аэрокосмических исследований изучила данные, полученные с помощью космического аппарата NASA OSIRIS-REx с двух небольших астероидов Рюгу и Бенну. И каково же было их удивление, когда они обнаружили в составе астероидов сахар, который необходим для формирования жизни!

Это открытие подтвердило важную гипотезу: химические реакции на космических объектах могут привести к созданию базовых для появления жизни элементов. То есть неорганическая материя в космосе способна порождать сложные органические соединения, которые лежат в основе жизни.

Ученые изучали метеориты, богатые углеродами, и обнаружили на них несколько видов сахаров, в частности рибозу, арабинозу и ксилозу. Рибоза является ключевым компонентом РНК. Эта молекула играет важную роль – кодирует генетическую информацию. Образно говоря, РНК – это инструкция для организма, как синтезировать белок. А ДНК – автор этой инструкции.

«Раньше на метеоритах уже находили другие компоненты, важные для жизни. Например, аминокислоты, из которых состоят белки, и базовые элементы для нуклеиновых кислот, которые нужны для ДНК и РНК. Но сахар до сих пор найти не удавалось! – говорит ведущий автор исследования Есихиро Фурукава из Университета Тохоку. – Сахара – это была последняя недостающая часть среди строительных блоков, из которых строится жизнь».

Вечная загадка происхождения жизни – как живая материя могла возникнуть из неживой с помощью химических процессов. И, похоже, все базовые органические элементы есть в космосе. Они могут образовываться из неживой материи.

Органические вещества образуются из неорганических во время столкновения частиц на высоких скоростях. Такое возможно в условиях высокой плотности, температуры – например, когда образуются или сталкиваются звезды.

А уже из простых органических соединений типа метанола синтезируются более сложные вещества. При столкновении звезд, как брызги во время взрыва, образуются метеориты, которые разносят органические вещества по всей галактике. Скорее всего, когда-то именно таким образом они были занесены на Землю. И, попав в благодатный край, дали начало жизни на нашей планете.

В космосе есть гигантские резервуары с органическими молекулами

Астрофизики обнаружили резервуары для органических молекул, которые необходимы для возникновения жизни. Вокруг молодых звезд образуются диски плотного газа, которые вращаются вокруг звезды. Это так называемые протопланетные диски, из них потом и образуются планеты. Процесс образования планет из дисков занимает от нескольких сотен тысяч до миллионов лет. То есть, по меркам Вселенной, происходит довольно быстро.

Ученые изучили протопланетные диски у нескольких недавно образованных звезд. И обнаружили в них залежи больших органических молекул. Оказалось, что базовые химические условия, которые привели к возникновению жизни на Земле, могли быть широко представлены в нашей галактике, как считает астрофизик Джон Или из Университета Лидса.

Эти молекулы являются ступеньками между простыми молекулами, например оксидом углерода, и сложными органическими, которые нужны для создания жизни. Из этих «сырьевых ингредиентов» потом формируются сахара, аминокислоты и компоненты РНК. Такие диски окружали когда-то и молодое Солнце. Из них образовались планеты.

Для изучения «космических» молекул ученые использовали телескоп ALMA, который находится в Чили на высоте 5 километров. Телескоп улавливает даже очень слабые сигналы. Каждая молекула изучает уникальный спектр волн, оставляя неповторимый отпечаток. И структуру вещества в отдаленных частях космоса можно узнать по этим своеобразным «отпечаткам пальцев». Они позволяют ученым определять присутствие молекул и исследовать их свойства.

Прежде всего ученые искали присутствие трех молекул: циано-ацетилен (HC3N), ацетонитрил (CH3CN) (нитрил уксусной кислоты, используется как растворитель) и циклопропенилиден (c-C3H2). Эти молекулы были необходимы для появления жизни на нашей планете 4 миллиарда лет назад.

Ученые обнаружили эти органические молекулы в четырех из пяти наблюдаемых дисков. Кроме того, количество молекул оказалось значительно выше, чем ожидалось. «Молекулы расположены преимущественно во внутренних областях протопланетных дисков. Их оказалось в 10–100 раз больше, чем предсказывали математические модели», – заявил Джон Или.

Получается, что шансы на то, что даже в нашей галактике есть жизнь, намного выше, чем считалось ранее. Ведь все строи-тельные кирпичики уже на месте! Что ж, как видите, в нашей Вселенной есть достаточно органического материала, чтобы строить жизнь во всем ее многообразии.

Получается, что все мы состоим из частичек, которые были созданы миллиарды лет назад и вышли из недр гигантских звезд, которые когда-то взорвались как сверхновые.

Глава 9
Черные дыры

Черные дыры – пожалуй, самый интересный космический объект для любого человека, не связанного в своей профессиональной деятельности с космосом. Насколько черные дыры интересны обычным людям, настолько про них не любят рассуж-дать астрофизики. Это сложные объекты, которые довольно неплохо исследованы. Они играют серьезную роль в развитии наших галактик. Но изучение черных дыр особого удовольствия астрофизикам не приносит. Это суровые объекты, которые напоминают о бренности нашего бытия.

Черная дыра – это объект гигантской массы. При этом компактно упакованный. Это наделяет черную дыру удивительными свойствами: она может затягивать в себя даже свет! Фотоны не могут свободно пролететь мимо, не будучи затянутыми этим гигантским космическим монстром.

Важный момент, о котором часто забывают: сила притяжения обратно пропорциональна квадрату расстояния. Чем больше расстояние, тем слабее притяжение. А компактные размеры черной дыры при гигантской массе дают ей супергравитацию. Ее гравитация настолько плотная, что сдавливает вещество максимально. Ведь в атомах на самом деле много пустоты. Ядро и электрон занимают лишь небольшую часть атома.

Главная особенность черной дыры – у нее есть так называемый горизонт событий. Это граница, за которой исчезает все, даже свет. Никакая информация, попав в черную дыру, не может из нее ускользнуть. Обратного пути у вещества, которое прошло горизонт событий, уже нет. Если максимально упростить, то горизонт событий – это та линия, где скорость, с которой нужно вырваться из черной дыры, превышает скорость света. Вам нужно двигаться быстрее света (что невозможно для любого вида материи), чтобы вырваться из цепких лап гравитации черной дыры. Она эффективно собирает и складывает в своих недрах вещество.

Черную дыру можно смело назвать перфекционистом среди материальных объектов. Если бы черная дыра была человеком, из нее получился бы идеальный дизайнер интерьеров. В скромную «однушку» этот дизайнер уместил бы вещи целой многоэтажки, максимально четко и компактно разложив их по полочкам.

Как ученые могут обнаружить черную дыру, если она не испускает свет?

Действительно, напрямую черную дыру увидеть нельзя. Но можно заметить по проявлениям.

Во-первых, через систему двойных звезд, одна из которых – черная дыра. Она начинает постепенно забирать вещество у своей «сестры», и этот процесс хорошо заметен. С помощью гравитации она засасывает в себя поток плазмы и газа. На данный момент это самый распространенный способ обнаружения черных дыр.

Во-вторых, через перепады светимости далеких звезд. Когда черная дыра пролетает между звездой и Землей, где расположены наши телескопы, она забирает себе часть света. Звезда резко тускнеет.

Также сверхмассивные черные дыры можно заметить по так называемому аккреционному диску. Черная дыра затягивает в себя гигантские объемы вещества, которые начинают крутиться вокруг нее на огромных скоростях. Из-за высокой вязкости возникает сила трения, которая заставляет материю светиться.

Сверхмассивные дыры часто находятся в центрах галактик, из-за чего те ярко светятся.

Черная дыра раскручивает вокруг себя вещество с огромной скоростью. Для сравнения: Меркурий, который находится максимально близко к Солнцу, движется вокруг нашего светила со скоростью около 48 км/c, а звезды и другие космические объекты, захваченные черной дырой и вращающиеся вокруг нее, разгоняются до 5000 км/с.

Как черная дыра затягивает свет, если он не имеет массы?

Если фотон не имеет массы, почему свет затягивается в черную дыру под действием гравитации?

Частица света – фотон – относится к безмассовым частицам. То есть его масса равна нулю. Такие частицы всегда движутся со скоростью света. Безмассовые частицы могут менять направление движения, энергию и импульc.

Импульс релятивистской частицы (то есть частицы, которая движется со скоростью, близкой к скорости света) считается не по методам классической физики, поэтому частицы с нулевой массой вполне могут его иметь. Энергия высчитывается по следующей формуле:

E = c √(p2 + m2c2)

Дальше подставляем массу фотона m = 0. Зная энергию, высчитываем импульс. Импульс фотона:

P = Е/c = hv/c = h/λ.

Здесь h – константа, постоянная Планка. Импульс зависит от длины волны. Чем меньше длина волны, тем больше импульс. Поэтому фотоны фиолетового цвета имеют импульс и энергию больше, чем фотоны красного цвета.

Черная дыра притягивает вещество с помощью своей гигантской гравитации. Как же она затягивает безмассовую частицу? Ведь, как мы прекрасно помним, сила притяжения зависит от произведения масс. Если у одного из объектов масса равна нулю, то и сила притяжения, соответственно, равна нулю. Как же черная дыра притягивает фотон?

С точки зрения ньютоновской гравитации это и правда невозможно. Но объекты типа черных дыр нельзя просчитать с помощью ньютоновской физики. Для них используют общую теорию относительности.

Здесь пространство-время искривлено материей. Все объекты продолжают двигаться по прямым траекториям так же, как двигались раньше. Просто пространство-время здесь бесконечно искривлено.

Черная дыра создает так называемый гравитационный колодец. Принцип его такой. Представьте себе бесконечный колодец. Если в него упадет, скажем, капля воды, она будет двигаться по прямой. И бесконечно долго. Но с внешней стороны капля просто исчезла, хотя она существует и движется. Фотон и дальше продолжает лететь по прямой линии, но для наблюдателя он скрыт. Исчез, так как залетел в гравитационный колодец. Ведь фотону нужно пространство, чтобы двигаться, – он летит по траектории.



Гравитационный колодец. Иллюстрация


Представьте себе шоссе. Вы можете ехать только там, где проложен асфальт. А теперь представьте, что само шоссе движется с такой скоростью, что даже если вы попытаетесь повернуть назад и двигаться против движения шоссе – вы не сможете.

Если свет попал внутрь черной дыры, тут пространство растягивается таким образом, что фотонам, чтобы выбраться, нужно суметь изменить направление и двигаться быстрее света. Для фотона это невозможно. К тому же фотон не пропадает в черной дыре навсегда. Черная дыра постепенно испаряется, испуская частицы.

Гравитация не может замедлить фотоны, но она забирает у них энергию, поэтому они смещаются в красную область. То есть выходят уже ослабленными, красного спектра. Это уже не те фотоны, которые когда-то в нее залетели (подробнее см. далее главу «Черные дыры со временем испаряются», этот эффект называется излучением Хокинга).

Впрочем, масса фотона в некоторых случаях может быть и не нулевой. Это гипотетический тяжелый фотон, экспериментально пока не обнаруженный. И он может обладать массой, просто очень маленькой. По оценкам астрофизика Дмитрия Будкера из университета Гутенберга, масса тяжелого фотона не может превышать 10 в – 18 степени электронвольт (в физике электронвольтами измеряют массу микрочастиц). В таком случае черные дыры могут взаимодействовать с фотонами, притягивая их с помощью классической гравитации.

Что находится за горизонтом событий

Согласно общей теории относительности, черные дыры пусты. За горизонтом событий – пустота. А вся масса черной дыры сосредоточена в безразмерной точке, называемой сингулярностью. Поэтому упасть на нее и разбиться в привычном понимании этого слова не получится.

Но по отношению к сингулярности название «дыра» не совсем корректно. Дыра подразумевает пустоту, а это небесное тело, напротив, – максимально сжатый комок вещества. Но раз уж закрепился термин когда-то в науке, не так просто его поменять. «Дыра» – это скорее метафорическая, художественная интерпретация.

Ведь если что-то – свет или материя – попало в дыру, назад пути нет. И на фоне космоса она черная, так как практически ничего не излучает. Свет она не отражает, а захватывает, не выпуская из цепких объятий плотной материи.

Согласно уравнениям Эйнштейна, которые не раз подтверждались на практике, пространство и время не существуют сами по себе. Они связаны с объектом, зависят от его массы. Пространство-время искривляется даже рядом с вами, когда вы идете на работу. Но это настолько несущественное искривление, что, как говорят физики, мы спокойно можем им пренебречь.

Но когда речь идет о таком супермонстре, как черная дыра, искривление пространства-времени становится сильно заметным.

Какая звезда может превратиться в черную дыру

Речь идет о массивных звездах, которые как минимум в три раза больше нашего Солнца. Такая звезда в конце своего пути может коллапсировать в черную дыру. Ее размер будет очень маленьким – максимум несколько десятков километров.

У каждого объекта, даже у человека, есть так называемый гравитационный радиус. Он же радиус Шварцшильда. Назван он в честь немецкого астронома Карла Шварцшильда, который первым предсказал существование черных дыр. Сделал он это в 1916 году, незадолго до смерти, точно решив уравнения Эйнштейна.

Гравитационный радиус – это тот радиус, при котором объект заданной массы превращается в сингулярность. Ну, или, говоря проще, в черную дыру. Высчитывается он по очень простой формуле:

rg = 2GM/c2

где G – уже знакомая вам гравитационная постоянная, а в знаменателе – скорость света в квадрате.

Подставляем сюда массу объекта вместо М и получаем гравитационный радиус. Для Солнца, например, гравитационный радиус был бы равен 3 километрам. Для Земли он составил бы всего 9 миллиметров.

Но ни Солнцу, ни тем более Земле просто не хватит массы, чтобы сколлапсировать в черную дыру.

Что будет, если человек попадет в черную дыру?

Трудно смоделировать такую ситуацию. Теоретически он может даже не погибнуть, по крайней мере сразу. Пространство-время здесь искривлено настолько, что человек может даже не заметить перехода, – его просто моментально затянет. Одно известно точно: выйти обратно он уже никогда не сможет. Вокруг него будет беспросветная тьма. Даже если он достанет мощный фонарь, свет не выберется и не сможет что-либо осветить внутри черной дыры.

Однако вероятность, что человек попадет за горизонт событий, практически нулевая. Дело в том, что вокруг черной дыры, как правило, на огромных скоростях вращается раскаленный газ – уже упоминаемый мною аккреционный диск. Ведь черные дыры заглатывают вещество, пролетающее мимо звезды, и т. д. И человек, даже в очень защищенном крепком скафандре, вряд ли преодолеет эту преграду. И даже если удастся защититься от высокой температуры, то радиация и рентгеновские лучи добьют человека окончательно. Именно в этих диапазонах свечение аккреционного диска максимально.

Если же представить, что у космонавта будет суперскафандр (фантастика, конечно, но падение в черную дыру космонавта – тоже событие не слишком реалистичное), который защитит и от радиации, и от жары, его ждет другой неприятный сюрприз.

На притягивающийся объект действуют так называемые приливные силы. Грубо говоря, его голова начнет притягиваться чуть сильнее, чем ноги. И из-за приливных сил его просто разорвет на части. Космонавта будет растягивать и растягивать, пока весь он не будет разобран на мельчайшие кусочки (надеюсь, что вы не за обедом читаете эту книгу, а то картину я нарисовал, мягко скажем, неаппетитную). До горизонта событий человек доберется уже разобранным на атомы, и в таком виде попадет внутрь черной дыры.

Почему черные дыры важны для появления жизни

«Черные дыры уничтожают все живое и неживое! О каком позитивном влиянии на жизнь может идти речь?» – спросите вы. Я задался ровно тем же вопросом, когда открыл очередную статью в октябрьском номере «Астрофизического журнала» за 2021 год. Оказалось, черные дыры и правда могут повысить вероятность появления жизни в галактике. Происходит это следующим образом.

Углерод – важный элемент для появления органической жизни. Образуется он в недрах звезд. Причем чем массивнее звезда, тем выше запас углерода. Вот только покидает он звезду неохотно. По оценкам Роба Фармера, немецкого астрофизика из Института Макса Планка, крупная звезда, вращающаяся в паре с черной дырой, выбрасывает в космос почти в шесть раз больше углерода.

Ядерные реакции внутри массивной звезды сначала превращают водород в гелий. Когда в ядре заканчивается водород, звезда расширяется. В этот момент гелий постепенно преобразуется в углерод. Когда звезда сбрасывает оболочку, в космическое пространство и выходит углерод. Звезда с массой в 40 солнц выбрасывает во время взрыва 1,1 солнечной массы углерода, если у нее есть «сестра» – черная дыра.

Если же звезда одинока, то количество углерода составляет всего 0,2 солнечной массы. Она прячет углерод внутри своего ядра. Черная дыра-напарница стимулирует более сильный взрыв, помогая высвободиться углероду. А чем больше углерода отправится в космическое пространство, тем больше вероятность появления жизни. Ведь чтобы возникла жизнь, природе нужно перебрать очень много вариантов.

Но углерод – не единственный способ, которым черная дыра стимулирует появление жизни. Массивные черные дыры в ядрах регулируют количество звезд, возможное в данной галактике. Международная группа ученых под руководством астрофизика Игнасио Мартина Наварро из Калифорнийского университета установила взаимосвязь между звездообразованием в галактике и массой черной дыры в ядре галактики.

Если бы черных дыр не было, то звезды были бы ярче и располагались плотнее, что снижало бы вероятность появления жизни. Потому что для жизни лучше подходит умеренная светимость, как у звезды класса «желтый карлик», к которому относится наше Солнце. А черные дыры не только поглощают «лишнее» вещество, но и разбрасывают по «рукавам» галактик газ и пыль. Разгоняясь на бешеной скорости, вещество покидает орбиту, на которой вращается вокруг черной дыры. И уже из этого вещества образуются новые звезды.

Новые звезды должны появляться, чтобы возникала вероятность появления новой жизни. Но без регуляции этого процесса галактика быстро потратит все вещество. К примеру, на заре появления галактики Млечный Путь процесс звездообразования в ней шел на уровне 10 солнечных масс в год. Сейчас этот процесс замедлился до 3 солнечных масс в год. В галактиках же с бурным звездообразованием – например, до 100 солнечных масс в год – весь газ быстро тратится. И такие галактики быстро потухают.

Квазар. Самая яркая… черная дыра

Когда ученые впервые открыли квазары, они были поражены. Небольшой по космическим меркам объект излучал, как тысячи галактик уровня Млечного Пути.

Квазары – это ядра далеких галактик, в основе которых – сверхмассивная черная дыра. Она поглощает окружающее вещество – другие звезды, газ, пылевые облака и т. п., – раскручивает их до высоких скоростей и раскаляет до высоких температур. И вся эта гигантская масса начинает ярко испускать энергию, которая и добирается до нас в виде фотонов.

Квазары существовали в далеком прошлом. Сейчас они находятся далеко, свет от этих объектов только достигает нашей планеты. Скорее всего, их уже не существует в таком виде. Пик расцвета квазаров пришелся на период 10 миллиардов лет назад.

Самый мощный из известных квазаров носит традиционное, с точки зрения астрофизиков, романтичное имя – J043947.08+163415.7. Находится он на расстоянии 12,8 миллиарда световых лет. То есть возник на заре Вселенной, когда она только отпраздновала свой первый миллиард лет. Этот квазар светит, как 600 триллионов солнц! Это как тысячи галактик одновременно, только из крайне компактного источника света. Связано это с тем, что на заре Вселенной звезды были намного массивнее. Наша галактика Млечный Путь появилась 13,2 миллиарда лет назад. И, весьма вероятно, для каких-нибудь далеких внеземных наблюдателей мы тоже выглядим как гигантский квазар.

Черные дыры со временем испаряются

Да, ничто не вечно в нашем мире. Черные дыры медленно испаряются. Эту гипотезу выдвинул Стивен Хокинг, потому явление и названо в его честь – излучение Хокинга.

Интересно, что на эту мысль Хокинга натолкнули два знаменитых советских астрофизика – Яков Зельдович и Алексей Старобинский. Когда Хокинг приезжал с визитом в Москву в 1973 году, ученые поделились с ним гипотезой, что черные дыры должны излучать частицы. Это следовало из принципа неопределенности Гейзенберга. Фундаментальный принцип квантовой механики подразумевал, что вращающиеся черные дыры должны порождать частицы. Но именно Стивен Хокинг смог довести эти соображения до полноценной гипотезы.

Квантовые эффекты черной дыры приводят к тому, что она медленно испаряется, теряя вещество. Квантовые эффекты способны преодолеть ограничения, которые накладывает на черную дыру горизонт событий. Но процесс этот крайне медленный – черная дыра неохотно расстается со своим веществом.

Черные дыры в нашей галактике. Есть чего бояться?

Согласно современным астрофизическим представлениям, сверхмассивные черные дыры, которые много лет растут, захватывая вещество, образуют ядра большинства галактик.

Млечный Путь – не исключение. В ядре нашей галактики находится сверхмассивная черная дыра Стрелец A* (так и произносится: «Стрелец А со звездочкой»).


Первая фотография черной дыры, сделанная с помощью телескопа Event Horizon. Это черная дыра, которая находится в центре галактики M87. Свечение вокруг – аккреционный диск. Фото Event Horizon Telescope


Но находится она от нас очень далеко – на расстоянии 26 тысяч световых лет. Нам ближе долететь до края нашей галактики, чем до этой черной дыры.

Столкновения или какие-то пересечения с черными дырами для Солнечной системы в ближайшие миллиарды лет крайне маловероятны. Мы буквально вращаемся в разных сферах. Как вы помните, наше Солнце – это молодой человек из провинции, в самом расцвете сил. Черная дыра – это столичный олигарх. Он окружил себя толпой телохранителей и смотрит на окружающий мир через затемненное стекло своего «роллс-ройса». Нам с ним не по пути. И слава Богу!

Стрелец A* представляет собой классическое ядро с массой 4,3 миллиона солнц. Причем заключен он в весьма маленький объем с диаметром, примерно равным расстоянию от Земли до Плутона. На саму сверхмассивную черную дыру приходится лишь четверть массы. Все остальное – сопутствующее вещество, включая звезды и облака газа, которые крутятся вокруг объекта.

В центре Млечного Пути есть и другие черные дыры, поменьше. Например, японские астрономы в 2019 году открыли черную дыру размером с Юпитер. Ее масса составляет «всего лишь» 32 тысячи солнц. В конце 2021 года астрономы обнаружили черную дыру в ядре Большого Магелланова Облака. Черная дыра тут тоже совсем небольшая – всего в 11 раз массивнее нашего Солнца. Она находится в системе двойных звезд с крупной звездой, которая в пять раз больше Солнца. И постепенно «выпивает» ее вещество, которое плавно перетекает в черную дыру.

Черная дыра и «другие миры»

Существуют изящные теоретические модели, которые наделяют черные дыры сверхъестественными, на первый взгляд, свойствами.

Например, черные дыры настолько сильно выворачивают пространство-время, что могут служить переходом в другие миры или временные зоны. Теоретически черная дыра может открыть дорогу в будущее. Или помочь преодолеть расстояния в миллиарды световых лет.

Любопытную модель предложил новозеландский математик и астрофизик Рой Патрик Керр. Керр предложил модель под названием «кольцеобразная сингулярность». И здесь черная дыра открывает поразительные возможности. Ведь она буквально сворачивает пространство-время, потенциально открывая дороги в другие измерения. Можно проходить в это кольцо, и оно может служить своеобразным лифтом для путешествия в другие миры.

Гипотетически и наша Вселенная может находиться внутри своеобразной черной дыры. И иметь горизонт событий, за который мы не можем заглянуть. Вот и варимся в своем маленьком мирке. Также и наша черная дыра может вмещать вселенные внутри себя. Как ни странно, противоречий с законами физики тут нет. Черные дыры настолько сильно искажают пространство-время, что возможны самые разные варианты. Пространство тут буквально выворачивается наизнанку, а говорить о законах физики в привычном для нас понимании уже не приходится.

Предположительно на другом конце, на выходе из черной дыры, может находиться так называемая белая дыра. Этот объект – выход в другой мир. И работает белая дыра ровно наоборот: она не притягивает к себе вещество, а выбрасывает. Однако гипотеза не означает, что все сложится гладко. Каких-то оснований считать, что черная дыра сворачивает пространство так, что открывается «портал в другой мир», у нас нет. Почему она должна быть проводником в другой мир, а не в небытие? Черная дыра – это же не разумный таможенник, который открывает границу в другую страну. Это просто – будем циничны и одновременно реалистичны – труп звезды.

И все-таки одна гипотетическая модель имеет право на существование. Это мост Эйнштейна – Розена, он же червоточина: идея о путешествии на большие расстояния с использованием свойства черной дыры изгибать пространство. Эту идею мы подробнее рассмотрим в части книги, посвященной будущему.

Глава 10
Скорость света

Скорость света – это предельная скорость движения частицы или взаимодействия. В философском смысле она устанавливает важную причинно-следственную связь. Любое событие может оказывать влияние только на события, происходящие позже него. И не может оказывать влияние на события, которые произошли раньше. То есть существует так называемая стрела времени. Время летит вперед, вернуться в прошлое можно только в кинематографе и научно-фантастической литературе. Скорость света равна примерно 300 тысячам километров в секунду. На первый взгляд, очень много. А по факту – весьма грустная величина.

Дело в том, что космические расстояния настолько велики, что даже движение со скоростью света займет много времени. Ближайшая к Солнцу звезда, Проксима Центавра, находится на расстоянии 4,24 световых года. До Сириуса – самой яркой звезды нашего ночного неба – лететь уже 8,6 светового года. И это все очень близкие звезды. Говоря бытовым языком, как если бы мы просто постучались в дверь к соседу.

В пределах 10 световых лет у нас находится 10 звездных систем. Большинство из них абсолютно бесполезны с точки зрения колонизации и добычи ресурсов. Звезды – либо тусклые красные и коричневые карлики, либо слишком яркие. Чтобы человек нашел что-то интересное и полезное, ему нужно охватить расстояние в сотни световых лет.

Что еще печальнее: скорость света в вакууме максимальна для фотонов и распространения электромагнитного (и, предположительно, гравитационного) взаимодействия. Частицы будут двигаться медленнее. И крупный массивный предмет – например, звездолет – будет достигать других звездных систем за довольно большое время. И это резко снижает привлекательность космической экспансии. Ведь даже в случае успеха связь между колониями будет потеряна. А на звездолете сменится несколько поколений астронавтов.

Скорость света – предел? Да, но не для нашей вселенной!

Вселенная расширяется в три раза быстрее скорости света! Как это вообще возможно? Неужели Эйнштейн был не прав? Радиус только наблюдаемой части Вселенной превышает 46,5 миллиарда световых лет. А ведь возраст нашей Вселенной – всего 13,8 миллиарда лет. Получается, что Вселенная расширяется в три раза быстрее скорости света?

Теория относительности говорит о том, что скорость света – предельная и выше ее ничего быть не может. Получается, что Эйнштейн был не прав? На самом деле, скорость света является пределом только для объектов: фотонов, электронов и других элементарных частиц. Это максимальная скорость для любых физических взаимодействий. И для движения частиц. Физические тела, состоящие из элементарных частиц, также ограничены скоростью света. Быстрее всех движется свет в вакууме, его скорость и считается предельной, на уровне 299,8 тысячи км/с.

Но пространство – не материя! И на его расширение никаких пределов по скорости не накладывается. Пространство расширяется неоднородно. Чтобы понять, как это, представьте, что вы надуваете шарик или растягиваете резинку. Разные части резинки растягиваются по-разному. В самых дальних уголках Вселенной пространство может улетать от нас со скоростью выше 950 тысяч км/с.

94 % галактик вселенной останутся навсегда недоступными для нас

В ранней Вселенной происходило быстрое расширение со скоростью, превышающей скорость света. Разные части Вселенной разлетались друг от друга быстрее, чем добирался свет от них. И получилось так, что стало невозможно увидеть некоторые части Вселенной из других областей. Это расширение пространства продолжается и сегодня.

Существует так называемая сфера Хаббла. Это область Вселенной, которая удаляется от нас со скоростью меньшей, чем скорость света. Радиус этой сферы – 14 миллиардов световых лет. И тут, по оценкам астрофизиков, находится всего 6 % галактик. Сфера Хаббла продолжает расширяться, но галактики, находящиеся в ней, хотя бы теоретически для нас доступны. А вот галактик вне сферы Хаббла мы не сможем достичь никогда.

Что еще быстрее скорости света?

Квантовая механика тоже работает вне этих границ. Квантовые процессы отказываются подчиняться ограничениям скорости! В квантовой механике есть так называемые «запутанные состояния». Это несколько частиц, которые мгновенно узнают о состоянии друг друга. Они как бы связаны друг с другом и взаи-мозависимы.

Представьте такой мысленный эксперимент. Вы берете черный ящик, в котором есть две секции, кладете туда два связанных фотона и отправляете две секции ящика в разные стороны. Фотоны будут обмениваться информацией друг с другом мгновенно! Даже если разделены на огромное расстояние.

Это как у близнецов, которые могут на большом расстоянии переживать за своего брата или сестру, когда тот в беде. Или мать, которая на расстоянии интуитивно беспокоится за своего ребенка. В случае с людьми здесь нет никакой мистики: накопленный опыт отношений, важность близких родственников друг для друга стимулируют чувства и интуицию.

В квантовых процессах природа этого явления пока остается предметом дискуссий ученых. Но однозначно здесь есть потенциал для будущих открытий, которые перевернут наше представление о мире. А вот нарушения постулата о максимуме скорости света здесь нет. Ведь обмен информацией идет не с помощью света.

Потаенные уголки вселенной

Вселенная продолжает расширяться до сих пор. При этом она расширяется с ускорением, то есть скорость со временем только растет. Диаметр всей нашей Вселенной, по разным оценкам, составляет 150–178 миллиардов световых лет. То есть наблюдаемая часть Вселенной может составлять всего лишь 25 %, остальные 75 % абсолютно недоступны для человека. К тому же пространство расширяется в три раза быстрее скорости света, превращая надежды человека изучить «темную часть Вселенной» практически в ничто.

В наблюдаемой части Вселенной – свыше 500 миллиардов галактик. Представляете, сколько их всего?! Сколько многообразных миров получили шанс возникнуть, сколько причудливых видов жизни получили шанс развиться? По-человечески грустно, когда осознаешь, насколько ограничены наши возможности. Что где-то существуют миры, в принципе недостижимые для человечества.

С другой стороны, а кто знает, насколько верна современная наука? Текущие данные, конечно, подтверждают ее выводы. Но ведь когда-то ученые верили в эфир. Еще совсем недавно законы Ньютона считались незыблемыми. А оказалось, что они работают только в ограниченных условиях. В микромире – среди элементарных частиц, и мегамире – галактиках и Вселенной – законы Ньютона уже не могут правильно описать происходящие процессы.

Возможно, в будущем люди смогут обойти ограничения, накладываемые современными законами физики. И тогда мы все-таки сможем изучить оставшуюся Вселенную. Хотелось бы верить!

ИНТЕРЕСНЫЙ ФАКТ

Сколько времени займет телепортация человека на орбиту?

Телепортация возможна! В этом нет ничего фантастического. Только она подчиняется постулату о скорости света, ведь информация будет передаваться с помощью классического взаимодействия. Клетки тела, мозг и наши воспоминания – это всего лишь информация. Значит, ее можно записать, передать на расстояние, а на выходе собрать по ней готового человека!

Сколько же времени потребуется, чтобы телепортировать человека? Ученые из Университета Лестера посчитали, что если разложить все клетки человека на данные, то вся информация уложится в 4,55 × 1042 бит. Примерно 20 % этого объема приходится на ДНК. Сколько времени и энергии потребуется, чтобы передать эту информацию хотя бы на орбиту Земли, телепортироваться на МКС?

Вам потребуются колоссальная пропускная способность и примерно 10 трлн гигаватт-часов энергии. Примерно за миллион лет столько тратит страна уровня Великобритании. Но с развитием технологий доступной энергии станет больше. Значит, этот вопрос решаем. Осталось вычислить время. На передачу этой информации на орбиту уйдет 4,85 квадриллиона лет. Это в 350 тысяч раз больше, чем существует Вселенная. Проще дойти до МКС со скоростью пешехода. И, наконец, самое простое – «распечатать» готового человека с его структурой тела, мозгом и воспоминаниями на 3D-принтере. Пока нашим 3D-принтерам не удалось точно воспроизвести коровий жир. А уж человека, с его сложной системой нейронов, в обозримом будущем вряд ли удастся. Что ж, это все вопрос развития технологий: энергетики, передачи данных и 3D-принтера.

Открытым остается вопрос самой личности человека. Как понять, что это будете именно вы, а не просто копия? Будете ли вы тем самым человеком? Интересно, сколько смельчаков найдется на Земле, кто в здравом уме станет тестировать эту чудесную машину…

Как далеко от солнца находятся его первые фотоны

Фотоны – «частицы света». Солнце непрерывно испускает огромное количество фотонов в космос. А на каком расстоянии находятся первые фотоны, которые выпустило Солнце? И можно ли до них добраться? Ведь если мы увидим эту картину, то сможем узнать, каким было Солнце, когда только появилось.

Солнце светит 4,603 миллиарда лет. Таким образом, его первые фотоны смогли пройти 4,603 миллиарда световых лет.

Но это путь, который не учитывает, что Вселенная расширяется, причем с ускорением. Нашей Вселенной – 13,8 миллиарда лет. Парадокс в том, что ее радиус в световых годах больше ожидаемого размера в 3,37 раза.

Постоянная Хаббла – параметр, который отвечает за прибавку к скорости расширения Вселенной, – равна, по оценкам астрофизиков из Университета Беркли, 73,3 км/с. Это означает, что на каждый мегапарсек (3,3 миллиона световых лет) от Земли Вселенная расширяется дополнительно еще на 73,3 километра в секунду. Астрофизик из Брюсселя Оливье ван де Вельде посчитал, как далеко от нас могут находиться первые фотоны Солнца с учетом расширения Вселенной.

По его оценкам, первые фотоны Солнца находятся на расстоянии 7,59 миллиарда световых лет от Солнца. Как бы мы ни старались, но увидеть их мы уже никогда не сможем. Физически невозможно их обогнать и взглянуть на Солнце, когда оно только зарождалось. Если, конечно, ученые не найдут хитроумные способы, типа варп-двигателя или червоточин, которые позволят пройти сквозь пространство, минуя эти ограничения.

Глава 11
Великий аттрактор. Что находится в точке, вокруг которой вращается наша галактика

Земля вращается вокруг Солнца, Солнце – вокруг ядра галактики Млечный Путь. А вокруг чего вращаются Млечный Путь и другие галактики? Такой объект есть, называется он Великий аттрактор (от английского attract – «привлекать»). Это гравитационная аномалия. Давайте разберем, что известно науке про Великий аттрактор. Но для начала вспомним, как работает гравитация.

Центр масс

Гравитация – фундаментальное взаимодействие между телами, обладающими массами. Чем ближе находятся объекты и чем больше их массы, тем сильнее гравитация. Но в быту и даже в физических расчетах эта модель часто упрощается. Поэтому мы говорим, что Земля нас притягивает. Хотя и наша масса влияет на Землю.

Строго говоря, Земля и другие планеты не вращаются вокруг Солнца. Просто в Солнечной системе существует центр масс, вокруг которого вращаются Солнце и все планеты.


Солнце и планеты Солнечной системы вращаются вокруг общего центра масс. Иллюстрация


Но так как масса Солнца составляет 99,86 % массы Солнечной системы, то этой условностью в расчетах обычно пренебрегают. Да и сам центр масс Солнечной системы находится внутри Солнца, только не в центре.

И во Вселенной все так. По факту и все звезды в нашей галактике Млечный Путь вращаются вокруг общего центра масс. Но лежит он, по сути, в ядре галактики – потому что там наибольшее скопление этой самой массы.

Великий аттрактор. Что это такое и где он находится

Великий аттрактор – гравитационная аномалия. Если в основном вещество в видимой части Вселенной распределено равномерно, то в этой точке плотность выше. Находится он от Солнечной системы на расстоянии 250 миллионов световых лет. Великий аттрактор имеет массу, в тысячи раз превышающую массу нашей галактики. И он является центром притяжения для Млечного Пути и других галактик вокруг. Астрофизики полагают, что этот объект представляет собой сверхскопление галактик.

Великий аттрактор не так уж велик

В юности я был крепким парнем. Даже по меркам супертяжей. И когда я занимался боксом, часто полагался на свои габариты – в ущерб технике. И тренер всегда мне говорил: «На любую силу найдется еще бóльшая сила!» И тренер был прав. Когда я пытался покорять все новые и новые спортивные вершины, там было полно и сильных, и высоких. И приходилось быть гибким. Менять тактику и достигать успеха за счет техники.

Вот и Великий аттрактор оказался не таким уж массивным, каким его сперва считали. За его пределами находится еще более мощная магнитная аномалия – так называемое сверхскопление Шепли, масса которого, возможно, в 4 раза больше. Только находится оно от Солнечной системы на расстоянии аж 650 миллионов световых лет. И на данный момент это самая крупная точка притяжения в наблюдаемой части Вселенной. И Великий аттрактор, в свою очередь, притягивается сверхскоплением Шепли.

Как подсчитали астрономы Гавайского университета, вклад Великого аттрактора в движение нашей галактики составляет 44 %. А бóльшую часть вклада оказывает именно сверхскопление Шепли. И эти аномалии сильно влияют на наши галактики. Из-за Великого аттрактора и сверхскопления Шепли наш Млечный Путь и ближайшие к нам галактики движутся с огромными скоростями. И это причина, почему Млечный Путь летит прямо навстречу галактике Андромеды.

Космическая аномалия пустота волопаса

Кроме сгустков масс во Вселенной есть и пустоты. Пустота Волопаса – сфера диаметром в 330 миллионов световых лет. Ее особенность в том, что там практически нет ни галактик, ни отдельных звезд. Это аномально пустая зона пространства.

Пустота Волопаса (или Войд Волопаса) – это интересная космическая аномалия, которую обнаружили всего 40 лет назад. Сперва ученые считали, что сфера вообще абсолютно пуста. В 1987 году астрономам все-таки удалось разглядеть несколько галактик. В итоге в этой огромной части пространства обнаружено 60 галактик. Для сравнения: во всей остальной Вселенной в сфере такого размера было бы более 2000 галактик. То есть получается, что плотность сферы примерно в 34 раза ниже, чем в целом во Вселенной.

Находится эта пустота на расстоянии в 700 миллионов световых лет от нашего Солнца. То есть сейчас мы видим ситуацию, какой она была в этом месте 700 миллионов лет назад. По мнению ученых, пустота образовалась из-за слияния пустот помельче. Странно, что такое произошло, но других научных объяснений пока не найдено. Эта гипотеза также не объясняет, почему подобных неравномерностей не найдено в других направлениях Вселенной. А самым уединенным местом в космосе является Сверхпустота Эридана. Здесь пусто, нет обычной материи. Здесь провал даже в реликтовом излучении: оно на 70 микрокельвинов меньше, чем в среднем по Вселенной. По мнению ученых, Сверхпустота Эридана могла возникнуть неподалеку от гигантских массивных объектов. Они и притянули отсюда все вещество в свою сторону.

Глава 12
Теория большого взрыва: как рождалась вселенная

В 1823 году немецкий астроном Генрих Ольберс обратил внимание научной общественности на интересный парадокс. Если Вселенная бесконечна и в ней бесконечно много звезд – значит, куда ни посмотри, а взгляд должен рано или поздно наткнуться на какую-нибудь звезду. И ночное небо должно быть ярким, белым. Но по факту мы этого не наблюдаем – ночью темно. Забавно, но ответ на этот парадокс дал не физик, не астроном, а… писатель.

Эдгар По в своей поэме «Эврика» в 1848 году обратил внимание на то, что Вселенная и скорость света могут быть конечны. Потому и не в каждой точке пространства должна быть звезда, испускающая луч. Это согласуется с данными современной космологии. Действительно, Вселенная не существовала всегда. У нее было начало. А рождение нашей Вселенной произошло 13,8 миллиарда лет назад.

Большой взрыв – это гипотетическое событие, с которого началась наша Вселенная. Мы не можем напрямую заглянуть в прошлое и увидеть, как все начиналось. Но с помощью математического моделирования ученые пришли к идее Большого взрыва. И эта теория хорошо объясняет то, что мы наблюдаем во Вселенной сейчас.

Из чего состояли сингулярность и Вселенная в начале своего развития? Откуда взялись законы физики и элементарные частицы? Давайте разбираться, что говорит об этом современная астрофизика. Конечно, мы не можем заглянуть в те мгновения, когда рождалась наша Вселенная. Но человеческий интеллект может использовать данные современной физики, химии и астрономии и просто протянуть их вспять. И довести до момента, когда начался наш мир.

Здесь и далее я буду основываться на современной космологической теории и на исследованиях Planck Collaboration – группы европейских астрофизиков, работающих в обсерватории Планка.

Сингулярность

Изначально наша Вселенная представляла собой так называемую сингулярность – то есть небольшую точку, в которой была заключена вся материя нашего будущего мира. Тогда материя еще не делилась на атомы и молекулы, а плотность сингулярности была сверхвысокой.

Почему произошел взрыв и из сингулярности стала расширяться наша Вселенная? Что заставило сингулярность выйти из стабильного состояния и взорваться? Эти вопросы остаются загадкой для ученых. Ответ на них вряд ли будет найден: для этого мы должны выйти за пределы нашей Вселенной, а это физически невозможно.

Итак, сингулярность взорвалась, и наша Вселенная стала быстро расширяться. В сингулярности температура составляла 1000 нониллионов (10 с 30 нулями) градусов. С расширением Вселенной температура и давление стали падать.

Здесь для простоты изложения я пропущу несколько этапов (например, слияние кварков и глюонов), которые интересны только профессиональным ученым. Перейдем к самому интересному – как произошла наша материя в привычном виде.

Рождение частиц и законов физики

А дальше процесс стал очень интересным. Произошла серия так называемых фазовых переходов. По сути, этот процесс – аналог обычной конденсации, когда газ скапливается в жидком виде. Только тут он коснулся элементарных частиц.

За миллионную долю секунды материя прошла несколько этапов развития, что в итоге привело к образованию всех элементарных частиц и физических сил (гравитационная, электромагнитная, а также сильные и слабые ядерные взаимодействия).

Рождение атомов и материи

Если первый этап был, по нашим меркам, почти мгновенным, то вещество в текущем виде появилось не сразу. Протоны и электроны сперва не складывались в атомы. Это произошло лишь спустя 380 тысяч лет после Большого взрыва – после того как температура заметно снизилась. Появились первые атомы. Материя на этом этапе на 75 % состояла из водорода, на 24,99 % – из гелия. Остальная часть пришлась на тяжелые формы водорода, гелия и лития. Все более тяжелые элементы, включая важные для нас кислород и углерод, образовались уже в недрах звезд. А некоторые, типа драгоценных золота и платины, появились из-за космологических катастроф – столкновений звезд и галактик.

Появление звезд

Спустя миллионы лет после Большого взрыва гравитация стала главной силой, которая начала собирать вещество в звезды и планеты.

По оценкам астрофизиков из университета Аризоны (США), первые звезды появились во Вселенной через 180 миллионов лет. Классическая теория космологии говорит, что звезды возникли позже – спустя 400 миллионов лет. Но все ученые сходятся во мнении, что первые звезды были в сотни миллионов раз ярче современных. Конечно, жизнь в таких условиях зародиться все равно не могла.

В дальнейшем во Вселенной стали появляться тяжелые элементы, из них складывались планеты. 4,57 миллиарда лет назад появилось наше Солнце.

Космос – это гигантская микроволновая печь

В космосе температура на 2,7 градуса выше абсолютного нуля (то есть 2,7 Кельвина или –270,45 по Цельсию). Это останки фонового, так называемого реликтового излучения, которое служит эхом Большого взрыва. Реликтовое излучение – свет от первичной плазмы ранней Вселенной. Сейчас мы улавливаем его в виде микроволнового фона. Все, что холоднее, будет нагрето в микроволновой печи. Эти микроволны пронизывают пространство, в космосе нет абсолютно пустого места.

Если в космосе появляется вдруг более холодный объект – он нагревается в этой «микроволной печи» до 2,7 градусов Кельвина. Что ж, картину рождения Вселенной ученые и правда более или менее представляют. Открытым пока остается вопрос, как был запущен процесс и почему все получилось именно так.

Бог или случай?

Современная теория Большого взрыва гласит: из непонятной, энергетически насыщенной горячей массы появились вполне конкретные частицы. Из них в дальнейшем собрались звезды, планеты, да и мы с вами. И как они образовались – это ключевой вопрос мировоззрения в современном естествознании.

Ученые утверждают, что все частицы собрались случайным образом. То есть электроны и протоны, которые вышли из этой массы, могли быть совсем другими – более тяжелыми, иметь другие заряды. Вселенные рождаются и погибают бесконечное число раз, и у каждой из них – свой набор параметров. В большинстве жить нельзя.

Так правда ли возможна такая случайность, которая разложила все элементарные частицы по нужным полочкам? И все фундаментальные частицы (их наука насчитывает 24) выстроились в нужном нам порядке случайно? Получается, весь набор физических параметров нашей Вселенной сложился идеально для появления жизни. Этот парадокс вошел в науку под названием антропного принципа.

Глава 13
Антропный принцип

Наша Вселенная имеет уникальный набор физических параметров, за счет которых возможно появление жизни, и у нее есть тонкая настройка этих параметров. Фундаментальные константы имеют идеально точные величины. В противном случае возникновение жизни и эволюция невозможны. В науке это утверждение известно под термином «антропный принцип».

Константы фундаментальных физических параметров (например, массы элементарных частиц, константы взаимодействий и т. п.) на первый взгляд выглядят так, будто у них нет какой-либо закономерности. Просто имеют такие значения, без какой-либо логики. Но стоит лишь чуть изменить эти параметры, как мир в привычном нам понимании исчезнет. В нем станет невозможным появление жизни в сложной и тем более разумной форме.

Получается, наш мир – хрупкая конструкция. Его математика подобрана идеальным образом, чтобы в этом мире могла возникнуть разумная жизнь. При других параметрах звезды будут существовать всего по несколько миллионов лет. За такой краткий промежуток они не смогут накопить более тяжелые вещества, включая углерод, необходимый для жизни. Получится пус-той скучный мир.

Масса нейтрона очень маленькая, но если бы она была легче хотя бы на десятую долю процента, атомы водорода мгновенно превращались бы в нейтроны. При отсутствии водорода никаких полноценных звезд не было бы возможно в принципе. Увеличить массу нейтрона хотя бы на минимум тоже нельзя: невозможны будут стабильные ядра и химические вещества из таб-лицы Менделеева в принципе.

Соотношение масс электрона, протона и нейтрона вместе с электромагнитной постоянной будто идеально подогнаны друг к другу. Именно от них зависят плотность веществ и само существование сложной химии, а вместе с ней – планет и органических соединений, необходимых для жизни.

То же касается и геометрии нашего мира. Если бы пространство было не трехмерным, а многомерным, орбиты планет не смогли бы быть устойчивыми. Электроны падали бы на ядра, и мы получили бы нейтронное вещество. То есть при изменении физических параметров мы не просто получаем другой мир – мы получаем мир, в котором в принципе невозможна жизнь!

Есть две формулировки антропного принципа.

Слабый антропный принцип

Мы видим этот мир, потому что во вселенных с другим набором физических параметров нет наблюдателя, который может его увидеть.

Наша Вселенная могла бы быть и иной, но тогда было бы невозможно появление в ней человека, который смог бы задавать подобные вопросы.

Сильный антропный принцип

Наша Вселенная должна была получить физические параметры, которые сделали возможным появление жизни.

Обе формулировки антропного принципа предполагают, что законы физики в принципе могут быть другими в других вселенных. Или могли бы быть другими изначально в нашей Вселенной.

И вот тут мы приходим к вопросу: как так идеально все сложилось? Антропный принцип относится к сфере не физики, а философии.

Здесь вопросы науки в традиционном ее понимании заканчиваются, начинаются вопросы веры. Либо есть Бог, который это запустил, либо случай. Бог в данном случае может быть кем угодно: изначальным законом (как бы ДНК Вселенной), христианским или мусульманским… Но это некий Разум, который запустил процесс именно таким образом.

Второй подход – материалистический, он гласит, что набор физических параметров, идеальных для жизни, появился случайно. Просто была возможность попробовать миллиарды триллионов раз. И рано или поздно, согласно теории вероятности, должен был появиться наш мир.

Нам очень сложно поверить в такой случай. Такова уж человеческая природа: мы во всем склонны видеть закономерности. А наш мир устроен слишком идеально, чтобы это было простым совпадением. Поэтому парадокс, вызванный антропным принципом, заставляет нас по-новому взглянуть на гипотезу мультивселенных (подробнее о мультивселенных речь пойдет в четвертой части).

Получается, что место, где появились люди, в любом случае является привилегированным. И тут нет ничего необычного. Если гипотеза мультивселенных верна, то каждая из таких вселенных обособлена и идет по своему пути. И со своим уникальным набором физических параметров. Просто в тех вселенных, где константы другие, нет наблюдателя, способного оценить чудо своего мира.

Что ж, антропный принцип во многом завязан на специфику человеческого сознания. Мы везде ищем логику и гармонию. И удивляемся идеальному устройству нашего мира. Это как если бы вода в луже удивлялась тому, что форма углубления точно соответствует ее собственному объему. А ведь вода просто заполнила весь доступный объем, что у нее был.

Глава 14
Какая форма у нашей вселенной

Плоскоземельщиков еще не всех победили, а тут – новая плоскость в нашем мире. Да еще и такая масштабная!

При слове «Вселенная» большинство рисует в воображении бесконечную сферу, где галактики распределены более или менее равномерно. Однако, по данным современной астрофизики, это не так. По форме Вселенной до сих пор ведутся дискуссии, но большинство астрофизиков разделяют гипотезу «плоской Вселенной». Возникает резонный вопрос: как же так? Ведь когда мы смотрим в небо, мы видим, что звезды распределены по всей небесной полусфере. О какой же плоскости может идти речь?

Если на Землю мы можем посмотреть со спутников и МКС и убедиться, что она шар, то быть внешними наблюдателями и также взглянуть со стороны на Вселенную мы не можем. Открытым остается вопрос трехмерной топологии пространственного сечения Вселенной.

Проще говоря, какая геометрическая фигура лучше всего опишет, какой формы наша Вселенная? Ни одна из современных физических теорий, включая общую теорию относительности, не может дать нам однозначный ответ на этот вопрос.

Почему астрофизики называют вселенную плоской

Конечно, речь не идет о том, что Вселенная выглядит плоской, как бумажный лист формата А4. Вселенная обладает трехмерной плоскостностью. Это означает, что пространство во все стороны подчиняется евклидовой геометрии. То есть оно прямое, а не искривленное.

Есть разница между математическими определениями плоского и изогнутого и повседневными определениями плоского и изогнутого. С точки зрения математики плоскостным будет пространство, где сумма углов треугольника равна 180 градусам.


Формы пространства в зависимости от параметра кривизны. Иллюстрация


Меридианы на глобусе. Иллюстрация


Если мы возьмем любые три точки во Вселенной и сложим из них треугольник, а затем посчитаем сумму его углов, она будет равна 180 градусам. Этого бы не случилось, если бы пространство было искривленным.

Если мы возьмем две параллельные прямые, то в бесконечности они не пересекутся. Это значит, что пространство не искривлено.

Представьте себе две параллельные прямые на шаровидной поверхности. Они не смогут вечно идти параллельно друг другу – они обязательно пересекутся. Как меридианы, которые пересекают экватор под прямым углом и в этом месте параллельны друг другу. Но на полюсах они все пересекаются.

Космическая обсерватория Планка собрала данные по реликтовому излучению, включая его температуру, линзирование и поляризацию. И оказалось, что его параметр кривизны практически нулевой: ΩK = –0,004.

Возможно, на этапе своего возникновения Вселенная была с очень большой кривизной, однако со временем, расширяясь, она стала плоской.

Массивные объекты искривляют пространство. Как же вселенная остается плоской?

Теория относительности говорит нам о том, что пространство искривлено. И это экспериментально подтвержденная теория. Однако искривляется оно не само по себе, а вблизи массивных объектов.

По факту, плоскость Вселенной означает однородность распределения вещества. Однако вещество во Вселенной в локальных участках распределено неоднородно. Есть пустоты, где плотность галактик в тысячи раз меньше, чем в среднем по Вселенной. А есть, наоборот, точки, где концентрация галактик намного выше, – например, Великий аттрактор и сверхскопление Шепли. Они настолько плотны и велики, что вокруг них начинают вращаться другие галактики, как наша Земля вращается вокруг Солнца. Но все это происходит лишь в небольших масштабах.

На больших расстояниях – например, от 200 миллионов световых лет – вещество во Вселенной распределено однородно по всем направлениям. Аналогичная ситуация и с искривленным пространством. Локально массивные объекты могут искривлять пространство-время. Именно локально!

Когда ученые говорят о том, что Вселенная – плоская по форме, речь идет о больших масштабах, без учета локальных изменений. Что ж, именно так устроена наша Вселенная по данным современной науки. В следующей части книги мы разберем физические законы, лежащие в ее основе.

Часть III
Физика Вселенной

В этой части мы разберем основные физические вопросы, связанные с космосом.

Средневековые ученые считали, что есть два вида сил. Первая тянет предметы вниз. Вторая отвечает за движение космических объектов. Именно потому, что эта сила – другая, Луна не падает на Землю, учили они.

Исаак Ньютон был первым, кто убедительно доказал, что в основе этих сил находится единый механизм. Гравитация! Законы Ньютона прекрасно работают применительно к земным объектам, довольно точно описывают и предсказывают большинство явлений в Солнечной системе. Однако вблизи массивных объектов и при движении со световыми скоростями законы Ньютона неприменимы.

Глава 15
Теория относительности

Говорить о космосе без теории относительности – это как пытаться идти на современную войну со средневековым оружием. Смотрится эффектно, но абсолютно непрактично.

Общая теория относительн�

© Дементьев А.А., текст, 2022

© Апаева А.Р., иллюстрации, 2022

© Издательство АСТ, 2022

* * *

Предисловие

Мы с вами живем в интересную эпоху, когда вновь возрождается интерес к космосу, причем на новом витке.

Если в XX веке за стремлением покорить космос стояло желание военного господства, то сейчас главные двигатели – экономика и философия.

Экономика – потому что прорыв в покорении космоса поможет решить финансовые проблемы, обеспечить доступ к новым материалам и технологиям.

Философия – потому что космос сейчас становится главной областью, где пока еще сокрыты мировоззренческие смыслы. Где можно попробовать найти ответ на вопросы «Как устроен мир?» и «Что такое человек и зачем он здесь появился?».

Книга ориентирована на широкий круг читателей.

Древние греки умели говорить об устройстве мира просто, используя язык метафор с применением обычной арифметики и геометрии. Представьте, они умели говорить о частицах, не прибегая к сложному уравнению Шредингера! И не вводили 10 новых измерений, как в современной теории струн.

Такую же цель поставил и я в этой книге. Ведь у каждого, даже самого сложного научного объяснения есть аналогии в обычной жизни. Через них понять устройство мира гораздо проще!

Спасибо древним грекам за этот метод, который я у них со всем уважением позаимствовал.

Книг про космос существует немало. В чем уникальность этой книги? В том, что мы обратим взгляд на Вселенную и ее объекты, пользуясь таким инструментом, как наука о человеке.

Как новые открытия изменят быт человека? Что мы узнаем нового о том, как устроен мир?

Есть ли у нас «соседи» в космосе, и если есть, как они живут или выглядят? Как человек может преодолеть ограничения, наложенные на него природой, и все-таки освоить другие планеты?

В первой части мы разберем Солнечную систему. Взгляд через призму философии порождает массу интересных вопросов. Почему условия на нашей Земле идеальны для возникновения жизни? И откуда взялся строительный материал для всего живого?

Новейшие данные математического моделирования говорят нам о том, что ситуация на Земле не всегда будет комфортна для жизни. Поэтому мы узнаем, как скоро Земля вместо уютного гостеприимного места превратится в настоящий ад для всего живого.

Во второй части, посвященной Вселенной, мы познакомимся детально с нашей галактикой и узнаем, что думает наука о загадочных объектах типа черных дыр.

В третьей и четвертой частях мы разберем, какие загадки Вселенной пока остаются неразгаданными и какие законы физики лежат в их основе.

И, наконец, в пятой части погрузимся в атмосферу настоящей научной фантастики: оценим вероятный сценарий космической экспансии, посмотрим, какие планеты могут быть колонизированы в первую очередь и с какими проблемами столкнутся первые колонисты. А также взглянем на другие звездные системы и попробуем предсказать, какие формы может иметь жизнь на планетах с высокой и низкой гравитацией.

Сергей Есенин писал: «Лицом к лицу лица не увидать. Большое видится на расстоянии». Вот и нам надо сделать шаг назад и посмотреть издалека на весь мир через призму ценности для человека.

Наука стала слишком объективистской, кантовской вещью в себе. Мы же ей добавим пятое измерение – человека. И тогда весь мир заиграет для нас новыми красками.

Человечество стоит на пороге больших открытий в космосе. Сейчас мы напоминаем Европу в доколумбову эпоху. Мы твердо знаем, что где-то далеко есть много интересного и важного: земли, ресурсы, другие народы. Но пока просто не доплыли до них.

Сейчас мы находимся в стадии подготовки той самой экспедиции Колумба: систематизируем факты, обучаем и собираем команды, расставляем правильные приоритеты.

Вперед, в путешествие!

Часть I

Солнечная система

В первой части мы поговорим о ключевых объектах Солнечной системы, которые важны для человека. О том, как они возникли, что с ними станет в будущем и какую пользу и угрозу они могут таить в перспективе.

И начнем с нашей родной планеты.

Глава 1

Почему Земля – идеальная планета для жизни

Мы много можем рассуждать о космосе, но все-таки самый важный для нас объект – планета Земля.

Удивительно, но наша Земля будто идеально создана для того, чтобы на ней появилась жизнь.

Судите сами:

Мы находимся в «зоне Златовласки». Так астрофизики называют зоны, которые находятся на идеальном расстоянии от своей звезды. Не слишком жарко и не слишком холодно, в отличие от большинства других планет.

Мощное магнитное поле. Магнитное поле защищает Землю от летящих из космоса заряженных частиц – солнечного ветра и других видов космического излучения. Без такого поля развитая жизнь на нашей планете была бы невозможна, поскольку космическая радиация сжигает все живое.

Вода. Кислород и водород – довольно распространенные в космосе элементы. На нашей планете они оказались в нужной пропорции для построения молекулы H2O. Конечно, воды в Солнечной системе достаточно, но температурный режим на Земле допускает воду в жидком виде. Это уже редкое явление во Вселенной, где обычно либо очень жарко, либо очень холодно.

Твердая основа. Половина известных нам планет Солнечной системы и многие экзопланеты (это планеты, которые вращаются вокруг других звезд) принадлежат к газовым гигантам. Сложные формы жизни на них, скорее всего, маловероятны.

Больше – не надо! У Земли очень удачный размер и плотность. Этого достаточно, чтобы удержать атмосферу (иначе ее сразу сдует солнечным ветром, как на маленьких Меркурии и Луне). Но при этом наша планета и не слишком тяжелая. Любые излишки гравитации усложняют развитие жизни. Если увеличить гравитацию, скажем, в два раза, о космических полетах мы можем забыть на долгие годы. Развить первую космическую скорость и вылететь на орбиту станет для нас очень сложной задачей.

Спутник Луна. Немаленький, но и не очень большой. Ровно такой, какой нужен, чтобы грамотно перемешивать вещество на Земле с помощью приливных сил. Кроме того, спутник такого размера помогает стабилизировать земную ось. Профессор физики Джейсон Барнс из Айдахского университета смоделировал ситуацию, как повела бы себя ось вращения Земли без Луны. Оказалось, что отклонения могли составлять до 20 градусов. Это не катастрофа – жизнь могла бы появиться и развиться и в этих условиях. Но вот комфортной для жизни поверхности было бы меньше.

Стабильность климата. Это очень важное условие для возникновения сложных форм жизни. Климат должен быть стабильным, без резких перепадов между днем и ночью. Трудновато было бы жить на планете, где утром –70 ℃, а к обеду ты сварился. Конечно, к такому не адаптируется ничто живое. Наклон оси Земли – чуть больше 23 градусов, что обеспечивает мягкую смену времен года. Опять же, спасибо Луне!

Солнце – адекватная звезда с умеренной активностью вспышек. Солнце – типичная средняя звезда. Если бы активность Солнца была выше, то вспышек было бы больше, и это повредило бы жизни на Земле. Астрономы не раз наблюдали ситуацию на других звездах, которые выпускают страшные вспышки. И если бы на их планетах была жизнь, такие вспышки ее бы точно уничтожили.

Нет рядом сверхмассивных тел. Если бы вместо Венеры рядом с Землей вращался монстр типа Юпитера, нашей планете пришлось бы сложно. О стабильной орбите пришлось бы забыть. Именно поэтому между Марсом и Юпитером – пояс астероидов, вещество просто не смогло собраться в единую планету. С другой стороны, Юпитер находится как раз там, где нужно: он собирает опасные метеориты и кометы, отводит их от Земли за счет своей гравитации.

Возраст. Нашему Солнцу 4,5 миллиарда лет. Появилось оно спустя 9,3 миллиарда лет после рождения нашей Вселенной. Выглядит как ничего не значащие цифры. Однако появление планеты, похожей на Землю, – задача непростая. Ведь такая планета должна образоваться у звезды, богатой тяжелыми элементами (в астрофизике это элементы тяжелее водорода и гелия). Более ранние звезды не имели должной концентрации тяжелых элементов, поэтому все их планеты – газовые гиганты. У них просто не хватает нужного материала, чтобы появилась планета земного типа.

Глава 2

Что способствовало благоприятным условиям для возникновения жизни на Земле?

Этот вопрос из сферы философии, а не физики. Любой физик ответит на него просто: «Земля идеальна для жизни, потому что жизнь возникла на Земле и адаптировалась к ней. Были бы на Земле другие условия – жизнь была бы совсем другой».

Когда я обсуждал эти факты с Яном Фрискусом, биологом из Университета прикладных наук Ван Холла Ларенштейна (Нидерланды), он бросил циничную фразу, которая мигом разбила все очарование и романтический настрой вашего покорного слуги: «Это не Земля идеальна для жизни. Это жизнь идеальна для Земли!»

Земля не обеспечивает нас всем необходимым для нашей жизни. Условия могли бы быть и лучше.

Не все места на Земле можно назвать идеальными. Есть, к примеру, подводные вулканы – максимально отвратительные условия для человека. Но экстремофилы – микроорганизмы, которые умеют выживать в суровых условиях без кислорода, при сверхнизких/сверхвысоких температурах и давлении, – чувствуют себя там прекрасно, потому что адаптировались к этим условиям. Были бы условия другие – адаптировались бы и к ним.

Но для организма, подобного человеческому, Земля, действительно, имеет условия, близкие к идеальным.

Так и хочется сказать словами героя произведения Вольтера «Кандид, или Оптимизм»: «Все к лучшему в этом лучшем из миров!»

Но первое впечатление обманчиво. Несмотря на то что жизнь на Земле возникла, ей постоянно угрожает опасность извне.

Только за последние 540 миллионов лет (всего 12 % от времени существования Земли) жизнь на нашей планете пережила 5 крупных массовых вымираний и 18 вымираний меньшего масштаба. Причины были как внешние (например, падение метеорита), так и внутренние (вулканическая деятельность, смена состава атмосферы и т. п.).

Массовые вымирания ни разу не уничтожали жизнь целиком, но наносили серьезный ущерб: исчезало от 40 до 90 % видов животных, населявших планету на тот момент.

Последние научные данные говорят о том, что перед нами стоит немало вызовов. Но перед тем как понять, что нас ждет, давайте посмотрим, как появилась Земля.

Первая фотография Земли из космоса была сделана в 1946 году. Американская баллистическая ракета на базе немецкой «Фау-2» засняла нашу планету на кинопленку.

Первые пуски были неудачными: устройство падало, превращаясь в обломки. Но затем боеголовку решили отделить взрывом. Эта мера помогла, сильно замедлив падение.

Первая фотография Земли из космоса (суборбитальная ракета A4), полет № 13, 24 октября 1946 года). Фото White Sands Missile Range/Applied Physics Laboratory

Ракету запустили вертикально. Во время полета камера, установленная на ракете, непрерывно фотографировала Землю. Ракета поднялась на высоту 105 километров, после чего рухнула. Ракета разбилась вдребезги, столкнувшись с поверхностью планеты на скорости 100 м/c. От камеры остались одни осколки, но пленка, упакованная в стальную кассету, сохранилась.

Изначально «Фау-2» изобрели немцы в конце Второй мировой. Этими ракетами атаковали в первую очередь Великобританию.

Однако США, несмотря на запуск ракеты, на долгие годы отстали от СССР в вопросе освоения космоса. Первый – советский – искусственный спутник Земли был выведен на орбиту высотой в апогее 947 километров в 1957 году. Мы первыми успешно вернули с орбиты животных. А в 1961 году Советский Союз запустил в космос первого человека – Юрия Гагарина.

Глава 3

Эволюция Земли

Давайте посмотрим, как возникла наша Земля и какое ее ждет будущее.

Как появилась Земля

У звезд есть протопланетные диски. Это облака пыли, которые вращаются вокруг своих звезд, когда они только образовались. Протопланетный диск вначале раскаленный, он подпитывает звезду веществом.

Со временем протопланетный диск начинает остывать. Частицы собираются в более плотные комки вещества. Сперва появляются частички размером до 1 сантиметра. Затем из них начинают образовываться глыбы из льда и камня. Они сталкиваются друг с другом и постепенно слипаются. Глыба становится все больше, вещество начинает уплотняться все сильнее, собирая окрестные микрочастицы. Формируется объект, который в астрофизике называется планетезималь. Это глыба, напоминающая астероид.

Планетезималь. Иллюстрация

В определенный момент, когда масса становится очень большой, планета начинает принимать форму шара. Это максимально эргономичная форма для объекта с большой гравитацией.

Удивительно, но процесс формирования из глыбы полноценной планеты очень быстрый, несмотря на космические расстояния. Планета типа Земли может образоваться всего за 100 тысяч лет. Не то чтобы мы с вами за это время не успели бы даже сбегать за кофе, но по космическим меркам это буквально миг. Всего же процесс образования полноценной планеты из микропылинок занял до 20 миллионов лет.

Параллельно идет зачистка орбиты. Объекты с пересекающимися сферами сталкиваются, в результате чего у каждой планеты возникает своя самостоятельная орбита.

Так 4,57 миллиарда лет назад появилась наша Земля. Чуть позже, спустя примерно 20 миллионов лет, у нашей планеты появился спутник. Вероятная причина – столкновение Земли с объектом размером с Марс, из-за которого и откололся кусок, ставший нашим спутником – Луной.

В раскаленном шарике более плотное вещество погружалось вниз. В итоге образовались слои с ядром внутри. Земное ядро состоит из сплава железа и никеля с небольшими добавками. Это металлическое ядро в дальнейшем сыграет огромную роль для всего живого на Земле.

ИНТЕРЕСНЫЙ ФАКТ

В космосе есть туманность, которая состоит из крепкого рома с запахом малины.

В нашей галактике есть туманность, по вкусу напоминающая ром с нотками малины. Да и температура там комфортная – 27 градусов тепла. Где находится этот космический рай и как он образовался? В 120 парсеках от центра нашей галактики расположено пылевое облако Стрелец В2. Это практически в центре Млечного Пути – как храм Христа Спасителя от Кремля. Масса облака в 3 миллиона раз больше массы Солнца.

В районе Стрельца В2 есть интересный участок, который получил романтическое название – Большая колыбель молекул. Это плотное скопление газа с высокой по меркам межзвездного пространства температурой. Газ здесь разогревается до 300 Кельвинов (27 ℃). И здесь недавно родилась новая звезда. Именно в этой «колыбели» ученые регулярно находят множество органических молекул.

Оказалось, что вещество здесь насыщено двумя органическими соединениями – этилформиатом и n-пропилцианидом. Первое вещество придает малине ее вкус и запах. Второе – это основная составляющая рома. Кроме спирта, там обнаружена и вода. Идеальное сочетание веществ, хотя и отличается от наших классических пропорций спирта к воде – 40 к 60. Содержание спирта в туманности оказалось гораздо выше.

Какая форма у нашей Земли

Разумеется, не плоская. Но и не шар!

Земля представляет собой эллипсоид. Ее диаметр не равномерен по поверхности: на экваторе он на 43 километра больше, чем на полюсах. Получается, наша планета немножко сплюснута.

Не все спутники планет в Солнечной системе имеют форму, близкую к сфере. Спутники Марса, Фобос и Деймос, имеют очень неровную форму. Спутник Нептуна, Протей, также далек от симметричной формы. Возможно, планеты когда-то выхватили их из ближайшего пояса астероидов, где летает много подобных глыб.

Только крупные космические объекты со временем становятся сферическими (или эллипсоидальными) под действием силы тяжести. Например, Земля при формировании состояла, по сути, из раскаленной жидкой массы. Гравитация же всегда направлена к центру масс. Под действием силы тяжести вещество планеты сжималось – и образовался чуть сплюснутый шар.

Более твердое и тяжелое вещество ушло вглубь, в нижние слои. Такая слоистая структура с металлическим ядром внутри привела к появлению магнитного поля. Это поле отклоняет космическую радиацию, которая разрушительна для всего живого. Также магнитное поле защищает атмосферу, не дает ей рассеяться.

Газы, которые выходили из земной коры, образовали первичную атмосферу, состоящую преимущественно из водорода и гелия.

Хотя Земля и успешно отбивала радиацию и солнечный ветер, условия на ней были слабо пригодны для жизни. Потребовались сотни миллионов лет и серия катастрофических событий, которые, как ни парадоксально, сделали Землю более дружелюбной для всего живого.

Важным этапом в эволюции нашей планеты стала бомбардировка метеоритами. Они могли принести на Землю важные для будущей экосистемы материалы.

Тяжелая бомбардировка: Как 4 миллиарда лет назад Земля была расстреляна метеоритами

Поздняя тяжелая бомбардировка – так в геофизике называется период, когда Земля 4 миллиарда лет назад была буквально расстреляна метеоритами.

Метеориты взрывали земную кору, оплавляли поверхность. Это сильно повлияло на геологию нашей планеты и на состав полезных ископаемых.

Астрофизическая теория гласит, что в то время Юпитер, Сатурн и Нептун меняли орбиты. Из-за этого сместились и пояса астероидов, их орбиты стали пересекаться с Землей, Марсом, Венерой и Меркурием. И все планеты земной группы подверглись массивной бомбардировке метеоритами, которые ежедневно падали на поверхность. В этот период и было образовано большинство кратеров на Луне.

Сейчас орбиты крупных газовых гигантов стабилизировались. И теперь главный – и самый опасный – пояс астероидов расположен между Марсом и Юпитером. Второй пояс астероидов вообще вылетел за пределы орбиты Нептуна.

Оценить, сколько метеоритов упало на Землю, сейчас сложно: океаны, земля, живые организмы внесли свои коррективы. Но масштаб можно оценить по Луне. В то время на спутнике Земли образовалось более 22 тысяч крупных кратеров, диаметр которых превышает 20 километров. Диаметр 40 кратеров превышает 1 тысячу километров, есть несколько кратеров с диаметром свыше 5 тысяч километров.

Для сравнения: кратер, который уничтожил динозавров, в диаметре достигает 180 километров. А кратер, из-за которого предположительно случилось пермское вымирание, в диаметре составляет 500 километров. Тогда погибло более 90 % простейших морских и свыше 70 видов наземных позвоночных.

Последняя метеоритная бомбардировка состоялась 3,8 миллиарда лет назад. А уже 3,7 миллиарда лет назад появилась первая жизнь. Совпадение интересное. Оно и дало основание гипотезе панспермии: первая жизнь попала на Землю из космоса и была занесена метеоритами.

Эта гипотеза научно не доказана, хотя у нее есть поклонники в научной среде. Правда это или нет? Чтобы ответить на этот вопрос, потребуется не одна сотня новых научных открытий. Но гипотеза явно заслуживает внимания, так как совпадение интересное.

ИНТЕРЕСНЫЙ ФАКТ

Знаете ли вы, что Земля не одинока на своей орбите? С нами орбиту делит так называемый «троянский астероид» – 2010 TK7.

Планеты на заре существования Солнечной системы «зачистили» орбиты под себя, выбив с них другие небесные тела – планеты поменьше, астероиды и т. д. Однако кое-кто остался – например, астероид 2010 TK7. Он движется практически точно по земной орбите, но в 60 градусах впереди нашей планеты. Этот астероид находится в так называемой точке Лагранжа. Это точка, где уравновешены силы тяжести Земли и Солнца.

Астероид 2010 TK7 не опасен для нашей планеты. Самое близкое расстояние, на которое он подходит, – это 50 расстояний от Земли до Луны.

Воды на земле много. Но бывает и больше

Считаете, что наша планета богата водой? Если собрать всю воду, что есть на Земле, она поместится в сферу диаметром 1385 километров. Даже расстояние от Москвы до Анапы больше – 1510 километров! Просто все океаны, ледники и озера размазаны по Земле тонким слоем. На воду приходится лишь 0,12 % всего объема нашей планеты. И 97,5 % этой воды не пригодны для питья.

Земля не лидирует по содержанию воды даже среди планет Солнечной системы. На первом месте – Европа, спутник Юпитера. Европа по структуре похожа на нашу планету, но, как видно на фото, заметно уступает Земле в габаритах. Предположительно, Европа покрыта слоем льда толщиной в 30 километров. А под этим льдом, скорее всего, находится океан из жидкой воды.

Так что Землю нельзя назвать полноценной планетой-океаном: есть вода на поверхности, но глубина океана невелика относительно размеров самой планеты.

Но у нашей планеты есть другое важное свойство. Из всех планет Солнечной системы только на Земле существует вода в жидком виде прямо на поверхности. 70 % поверхности нашей планеты действительно покрыты водой.

Когда возникла жизнь на земле

Ученые сходятся во мнении, что жизнь на Земле появилась около 3,7–4 миллиардов лет назад.

ИНТЕРЕСНЫЙ ФАКТ

Жизнь меняет Землю

Жизнь появилась на нашей планете, но она, в свою очередь, сильно влияет на экосистему Земли. Например, на Земле не было кислорода в таком количестве. В земном воздухе содержится 21 % кислорода. Если посмотреть на атмосферы других планет Солнечной системы, то кислород там присутствует только в микроскопических количествах. Кислород на Земле в большом количестве возник из-за деятельности микроорганизмов.

Сперва жизнь развилась до одноклеточных форм, которые тонким слоем покрывали дно океана. Питались они с помощью фотосинтеза и плавно наполняли атмосферу нашей планеты кислородом.

Довольно долго планета была покрыта льдом. Причина этого проста: активность Солнца была на треть слабее, чем в наши дни.

Со временем активность Солнца росла, льды отступали. Это стимулировало развитие жизни. Сложные многоклеточные появились лишь 580 миллионов лет назад.

Как лорд Кельвин едва не уничтожил теорию Дарвина с помощью законов физики

В XIX веке критикам теории эволюции не давала покоя мысль, что человек подчиняется тем же законам природы, что и животные.

Знаменитый физик лорд Кельвин был ярым противником эволюции – и самым опасным для этого нового (на тот момент) научного течения. Выдающийся ученый XIX века утверждал, что Земля недостаточно стара, чтобы позволить естественному отбору разыграться. И по законам физики XIX века Кельвин был абсолютно прав!

Из школьного курса физики вы наверняка помните лорда Кельвина по температуре и понятию «абсолютный нуль». Именно Кельвин предложил температурную шкалу, которую используют в современной физике. И 0 по Кельвину – это тот самый абсолютный ноль, в котором все движение замирает. По Цельсию это будет –273,15 градуса.

Лорд Кельвин – это британский физик Уильям Томсон, которому титул пожаловала королева Виктория. Он внес большой вклад в развитие науки и научных инструментов.

Но хотя научные работы и сделали Кельвина знаменитым в научном сообществе и для потомков, публике он был больше известен в других амплуа. В частности, он был в свое время самым ярким критиком теории эволюции.

Это сейчас теория эволюции признана всеми учеными и споры ведутся лишь по поводу ее отдельных механик. В XIX веке теория Дарвина вызвала сильнейшую бурю протеста.

Как можно приравнять человека к животным?! Мы подчиняемся тем же законам, что муравьи и кошки? Это невозможно!

«Да-да, Бог сотворил всех животных такими, как мы их видим сейчас. А скелеты других, несуществующих видов – подделка» – вторили представители церкви.

Однако рациональных аргументов против теории было не так уж и много. И главный из них высказал лорд Кельвин. Аргумент был настолько серьезным, что с ним было вынуждено считаться все научное сообщество.

Кельвин подсчитал на основе термодинамических законов, что возраст Солнца – 100 миллионов лет. За большее время вещество уже прогорело бы. И в этом Томсон был прав! Он же не знал, что реакции на Солнце подчиняются не термодинамике, а совсем другим законам.

Земля, с учетом теории происхождения планет, существовала, по оценкам лорда Кельвина, всего 40 миллионов лет.

Для эволюции требуются гораздо большие сроки. 100 миллионов лет – это ничтожно мало, чтобы жизнь из простейших организмов достигла того многообразия, что мы видим сейчас.

Тогда ученые не могли точно посчитать, сколько времени для этого нужно. Но интуитивно понимали, что за 100 миллионов лет такого масштаба не будет. И они были правы. Вот несколько интересных цифр:

Чтобы животное размером с мышь эволюционировало до гиганта размером со слона, нужно минимум 40 миллионов лет. То есть все время существования Земли по оценке Кельвина.

Первая жизнь возникла около 4 миллиардов лет назад. Через 1,5 миллиарда лет бактерии научились фотосинтезу.

Первое многоклеточное появилось 650 миллионов лет назад.

То есть 3,35 миллиарда лет жизни потребовалось только для того, чтобы развиться до многоклеточных форм. И еще десятки миллионов лет – на эволюцию каждого из видов.

Конечно, на тот момент никто уже не верил в оценки религиозных мыслителей, что Земле 6 тысяч лет. Но даже 40 миллионов – это очень мало! По оценкам самого Дарвина, на эволюцию всего живого на Земле нужно 200 миллионов лет.

«Раз для эволюции требуются гораздо бóльшие сроки, чем время жизни Солнца и Земли, – значит, жизнь на нашей планете не могла развиваться по ее законам», – заявил Кельвин. Следовательно, животные уже были сотворены приспособленными для своих биологических ниш.

Чарльз Дарвин ушел из жизни в 1882 году – как раз в разгар критики его теории. И можно только посочувствовать мэтру, ведь все последние годы его жизни люди сомневались в том, чему он эту жизнь посвятил! Аргументы Кельвина были железобетонными по канонам науки того времени. Физика считалась самой точной из естественных наук и самой строгой по методологии. А значит, ее данные ставились во главу угла. Дела у теории естественного отбора были плохи.

В 1895 году физики окончательно сошлись во мнении, что возраст Земли составляет 20–40 миллионов лет. Теория естественного отбора выглядела обреченной.

А уже в следующем году французский физик Антуан Анри Беккерель открывает радиоактивность. Тогда ученые еще не осознали масштаба открытия, но дни теории Кельвина уже были сочтены.

В 1903 году Беккерель вместе с Пьером и Марией Кюри получает Нобелевскую премию за свое открытие. Радиоактивность признается всеми учеными.

А далее начался лавинообразный эффект. Радиоактивность предоставила человечеству принципиально новый метод измерения возраста древних объектов.

Зная время распада радиоактивных изотопов, можно отследить, на какой стадии они находятся в горных породах. И вычислить, когда они были образованы.

Но главное, Солнце и другие звезды не прогорают так быстро, как считалось ранее. Ведь в их недрах происходят ядерные реакции, у которых куда больший потенциал и энергетическая мощность.

Уже в 1911 году возраст Земли увеличили до 1,7 миллиарда лет. А в 1953 году, после более точных подсчетов, – до 4,5 миллиарда лет, что и стало общепризнанной версией.

Теперь у естественного отбора появилось то самое время, в котором он так нуждался.

Из неживого в живое

Жизнь во всем ее многообразии изучает биология. И история появления жизни на нашей планете не вписывается в рамки этой книги. Однако важно упомянуть один момент.

В 1924 году советский биолог Александр Опарин предложил термин «первичный бульон». Такое вот необычное название. Хотя я тоже, когда в бедные студенческие годы занимался наукой, постоянно о еде думал. Жизнь на Земле возникла путем химической эволюции молекул, содержащих углерод.

Органические вещества на нашей планете возникли из более простых соединений – метана, воды и аммиака. Под действием электрических разрядов – молний и ультрафиолета – они получили базовую энергию для химических реакций.

В дальнейшем эта концепция развивалась и дорабатывалась. Пока вопрос появления жизни остается открытым. Доминирующая гипотеза – так называемая Гипотеза мира РНК (РНК – рибонуклеиновая кислота), согласно которой молекулы рибонуклеиновых кислот стали первыми хранителями генетической информации.

Но оставим этот вопрос биологам. Нам интереснее другое. Откуда берется необходимая органика? Откуда взялся «бульонный кубик» для первичного бульона?

Оказывается, во Вселенной довольно много органических соединений! У Земли органические соединения были, скорее всего, еще на стадии формирования. И в дальнейшем строительный материал для жизни добавили метеориты. Подробнее об этом мы поговорим во второй части, когда речь пойдет о химическом составе Вселенной.

Сколько времени осталось для жизни на земле

Не так-то много, как может показаться на первый взгляд. По разным оценкам, условия на Земле будут благоприятны для жизни еще в течение 0,5–1 миллиарда лет.

Если учесть, что жизнь на нашей планете появилась примерно 4 миллиарда лет назад, мы уже давно прошли половину пути и плавно движемся к закату.

Однако Солнце, по оценкам современных ученых, будет существовать еще как минимум 7,5 миллиарда лет. Что же такого произойдет с Землей, что жить на нашей планете станет невозможно?

Что ждет землю дальше

Благоприятный период для нашей планеты продлится не так уж долго. Произойдет ряд внешних и внутренних изменений, которые сильно ударят по всему живому на планете.

В ноябре 2021 года ученые Кацуми Одзаки из Университета Тохо и Крис Рейнхард из Технологического института Джорджии по заказу NASA сделали прогноз о будущем нашей планеты. Цель – понять, сколько еще времени Земля будет пригодной для жизни. Цифры получились печальные. Катастрофические изменения для биосферы ждут нас уже спустя 500 миллионов лет. А спустя 1,5 миллиарда лет условия на Земле станут абсолютно непригодными для жизни.

Самый главный для нас фактор – Солнце.

Активность Солнца продолжит расти. Она и сейчас набирает обороты. Это происходит из-за накопления гелия – важного вещества для ядерных реакций внутри нашего светила. Поэтому Солнце светит все ярче и жарче.

В среднем, в течение каждых 110 миллионов лет светимость Солнца растет на 1 %. И за миллиарды лет эта прибавка становится существенной.

Через сотни миллионов лет это будет сильно заметно. Температура поднимется настолько, что океаны начнут испаряться. Вода на планете будет все больше существовать не в жидком и твердом состоянии, а в виде пара. Климат станет очень влажным, а парниковый эффект – крайне высоким. Из-за этого вода начнет улетучиваться из стратосферы в космос.

А через 1,1 миллиарда лет все океаны, скорее всего, испарятся с поверхности планеты.

Через 3,5 миллиарда лет на нашей планете будет так же жарко, как сейчас на Венере.

Кроме этого, активность Солнца приведет к снижению концентрации углекислого газа в атмосфере, так как будут выветриваться силикатные материалы. Углекислого газа станет мало для фотосинтеза. Именно на этом факте основан прогноз, что жизнь на Земле начнет исчезать уже через 500 миллионов лет.

Сокращение растений приведет к снижению концентрации кислорода в атмосфере планеты. Через 1 миллиард лет концентрация кислорода в атмосфере сократится в 21 раз – с текущих 21 % до 1 %!

Наклон оси. Через 1,5 миллиарда лет наклон оси нашей планеты может начать хаотично меняться, вплоть до отклонения на 90 градусов. Почему наклон оси будет меняться? Во-первых, будет меняться трение между внутренними слоями, в частности между мантией и ядром. Во-вторых, Луна постепенно удаляется от Земли почти на 4 сантиметра в год. И через полтора миллиарда лет ее влияние заметно снизится.

Если Земля будет направлена к Солнцу под углом 90 градусов, то полюса станут перпендикулярны. Одна половина планеты будет получать много тепла и света, а другая – страдать от их нехватки. Соответственно, в первом случае климат будет слишком жарким, температура поверхности будет подниматься до 80 градусов. В темной части, наоборот, будет сильный холод.

Земное ядро начнет остывать. Это приведет к серьезным климатическим переменам. Как я писал выше, трение между мантией и ядром изменится, что повлияет на скорость вращения и угол наклона.

Сутки постепенно увеличиваются из-за замедления вращения. Во времена динозавров, незадолго до их гибели, сутки длились около 23,6 часа. Сейчас они также прирастают, но за человеческую жизнь заметить это невозможно. Через 250 миллионов лет длительность суток будет составлять 25,5 часа.

Красный гигант. Если жизнь на Земле чудом сохранится, несмотря на все эти факторы, спустя примерно 5 миллиардов лет нас ждет неминуемое.

Солнце начнет превращаться в красного гиганта и резко расти в размерах. Это связано с падением давления внутри светила, так как вещество постепенно прогорает в его недрах.

Через 5 миллиардов лет красный гигант достигнет орбиты Земли и захватит нашу планету.

Расширяться до бесконечности не получится, и в какой-то момент произойдет взрыв: Солнце сбросит оболочку и станет белым карликом. И будет доживать свой век в таком виде.

Но, как я уже писал ранее, жить на Земле станет асолютно невозможно гораздо раньше. Нам отпущено примерно 0,5 миллиарда лет.

500 миллионов лет… Не так уж много, чтобы достичь степени развития, которая позволит улететь от катастрофических изменений на нашей планете.

С другой стороны, представьте, как люди уже со стороны, из другой звездной системы, будут смотреть на рост красного гиганта. И рассказывать, как когда-то в этой звездной системе родилась жизнь, которая распространилась по всей галактике!

Эволюция солнца. Как возникла наша звезда и что ждет ее в будущем

Часть интриги из этой главы я лихо уничтожил в главе про Землю. Однако о нашем светиле стоит поговорить особо.

Солнце – вполне обычная для нашей галактики звезда, относится к классу желтых карликов.

Если бы Солнце было человеком, сейчас ему было бы около 30 лет. Этот человек жил бы в каком-нибудь крупном провинциальном городе, далеком от столичной суеты и лоска.

Таких людей очень много в России. Таких звезд, как Солнце, очень много в галактике. И они весьма комфортны для появления жизни.

Если представить Москву центром, то наш герой жил бы и работал в Белгороде или Курске. На какой-нибудь очень надежной работе. Полагаю, был бы чиновником среднего ранга. Звезд с неба, простите за каламбур, он бы не хватал. Но жил бы чуть лучше большинства россиян.

Солнце входит в 15 % наиболее ярких звезд в нашей галактике, хотя и сильно уступает лидерам. 85 % звезд Млечного Пути – разные другие карлики: красные, коричневые, белые, которые светят гораздо более тускло.

Солнце находится на периферии нашей галактики Млечный Путь, подальше от высокой концентрации звезд и массивной черной дыры в ядре галактики. Максимально комфортно и безопасно.

Продолжение книги