Палеонтология антрополога. Книга 1. Докембрий и палеозой бесплатное чтение

Станислав Дробышевский
Палеонтология антрополога. Книга 1. Докембрий и палеозой

© Дробышевский С.В., текст, 2020

© Арутюнян Л.С., иллюстрации, 2020

© ООО «Издательство «Эксмо», оформление, 2020

* * *

Миллиарды лет вокруг Солнца вращается Земля. Примерно четыре миллиарда лет на ней копошится жизнь. Мы – лишь завершающий этап долгой и сложной истории, состоящей из мириадов странных созданий, изобретавших причудливые способы передать свое наследство дальше. Процесс этот долог и непрерывен. Но много раз планета сотрясалась катаклизмами. Метеориты и вулканы, оледенения и потопы, само развитие жизни регулярно приводили к массовым вымираниям и вслед за ними – всплескам разнообразия. Благодаря этому геологи и палеонтологи могут разделить всю историю на отрезки.

О первом из них – докембрии – мы знаем очень мало. Из мрака вселенской ночи выплыла планета, в сумраке первобытного океана шли странные химические реакции. Во тьме веков теряются важнейшие тайны бытия – зарождение жизни как таковой, появление ДНК, многоклеточности и полов. Это – ночь и рассвет планеты.

Второй из них – палеозой – освещен гораздо полнее. Встающая заря полноценной и понятной нам жизни представлена уже во всех своих ярких красках. За шесть периодов возникли все столпы нашей действительности, все главные группы организмов, все ключевые экосистемы.

Блистательный палеозой закончился крахом. Оставались еще двести пятьдесят миллионов лет, полдень планеты – мезозой и наше время – кайнозой, в которые природа доводила полученное до логического – и даже разумного – конца.

Конца ли? Да уж, стоит разобраться в прошлом, чтобы настоящее не стало концом…

Введение

Инге, Володе и Маше – моей любимой семье

Кажется, что в вихре тысячелетий кружатся в безумном хороводе причудливые чудища, рвут друг друга на части, хаотично сменяют одно другого, пропадают и вновь возникают из ниоткуда. Но нет! Не так работает эволюция!

Чудищ, конечно, хватает. И они действительно иногда друг друга рвут, но их коловращение отнюдь не беспорядочно. Во всем есть определенная логика, и ее постижение – суть палеонтологии.

Вообще, изложение прошлого в популярных книгах обычно строится тремя способами. Первый – описание истории палеонтологии, путешествия и приключения ученых, их поиски как полевые, так и интеллектуальные, споры и даже сражения, причем порой вполне буквальные. История науки поучительна и, бывает, мотивирует новых апологетов знания на продолжение подвигов. Идеальные примеры таких книг – «Жизнь охотника за ископаемыми» Ч. Штернберга (1936 г.), «На поиски динозавров в Гоби» А.К. Рождественского (1969 г.), «Тайны пылающих холмов» В.Г. Очева (1976 г.) и «Записки палеонтолога» Н.К. Верещагина (1981 г.). Конечно, у такого стиля есть и недостатки: кого выкрошил молотком из камня автор, про того и узнает читатель; цельную картину эволюции сложить из таких впечатлений невозможно.

Второй способ – описание ископаемых существ. Без фактов жить трудно, без них невозможно строить концепции и теории. Лучшие образцы – книги Й. Аугусты и З. Буриана «По путям развития жизни» (1966 г.), З.В. Шпинара и З. Буриана «История жизни на Земле» (1977 г.), Ю.А. Орлова «В мире древних животных» (1989 г.), а также М.Ф. Ивахненко и В.А. Корабельникова «Живое прошлое Земли» (1987 г.). Беда лишь в том, что зачастую книги, построенные по такому принципу, превращаются в занудные каталоги бесконечных и однотипных «завров».

Третий подход – изложение идей о том, почему шла эволюция, что ее двигало, как влияли на живых существ астрономические и геологические события, как сами эти существа взаимодействовали между собой. Строго говоря, это – самая суть палеонтологии. Практически образцовые примеры – уникальные книги К.Ю. Еськова «Удивительная палеонтология» (2007 г.) и А.Ю. Журавлёва «Сотворение Земли» (2019 г.). Но и этот подход без богатого фактажа рискует скатиться в бесплодное теоретизирование и прикольные, но не слишком осмысленные «размышлялки».

Одна из великих проблем популяризации палеонтологии – прочный стереотип, что это «прикольные динозаврики для детишек». На лекции по палеонтологии, даже если они заявлены как довольно научные, родители гарантированно приводят трех-пятилетних малышей. В 99 % случаях новейшие книги по палеонтологии – действительно книжки с картинками для дошкольников и школьников. Стандартный их вид – большие яркие иллюстрации (часто совершенно недостоверные) и минимум подписей (чаще всего довольно унылых и тоже не слишком отвечающих современному уровню науки). С одной стороны, понятно, что внешний вид ископаемых существ действительно часто впечатляет, а без картинок тяжело представить их. С другой же, все изобразить невозможно, а в наш век интернета с минимальными усилиями легко найти изображение почти любой древней твари. Скучное же перечисление «жил там – тогда – метров в длину» должно быть лишь скелетом повествования, тогда как кровь и плоть книги должны бы составлять объяснения причин и закономерностей происходившего и влияния прошлого на современность.

Можно ли совместить плюсы разных подходов и постараться избежать минусов? Что ж, попытаемся это сделать. Конечно, желающего приобщиться к чудесам палеонтологии ждет немало испытаний. Одно из них – мудреные и бесчисленные латинские названия. Без них никак не обойтись. Русских названий по понятным причинам для подавляющего большинства древних существ нет; иногда в детских книгах латынь заменяют русской транскрипцией, но это – самый ужасный вариант, потому что заинтересовавшийся читатель потом не сможет найти подробностей и развития истории в других источниках. Впрочем, в нашей книге транскрипция будет иногда применяться для меньшей громоздкости и избежания повторений, но с обязательным озвучиванием нормального латинского имени, хотя бы и в другом разделе текста. Зато названия бывают поучительны, интересны и даже забавны. Лучше всего расслабиться, не пытаться запомнить все имена – их миллионы, все равно не получится – и воспринимать латынь как музыку сфер; тогда постижение палеонтологии становится гораздо приятнее. В случаях, когда известно много видов какого-то рода, в нашей книге приводятся только родовые названия; если вид только один или конкретный вид чем-то особенно выдается, приводится и видовое наименование.

Между прочим, систематика многих и многих групп крайне запутана и спорна, так что, во избежание лишних споров, в большинстве случаев в книге не указывается ранг систематических групп – все равно найдется противоречащая точка зрения.

Изобилие латыни позволяет бороться с важнейшим стереотипом, огромной бедой современного бытового мышления. Часто в книгах по палеонтологии в стремлении к упрощению все богатство древних форм сводится к нескольким знаковым существам, дескать, «в палеозое жили трилобиты, в мезозое – динозавры, а кайнозой – время млекопитающих», поминается парочка переходных видов и парочка «живых ископаемых», причем примеры из книги в книгу приводятся одни и те же. У многих людей после чтения подобных книг складывается устойчивое впечатление, что «ничего-то и не известно, пару огрызков нашли – и насочиняли, вся эта наука – полная ерунда», за чем обычно следуют мутные рассуждения про творцов, инопланетян и прочий бред. В реальности наука располагает сведениями о сотнях тысяч древних видов! Уж чего-чего, а недостатка в данных у палеонтологов нет, только успевай изучать. Хоть немного отразить это великолепие, чтоб в глазах зарябило и в ушах зашумело, – одна из главных задач нашей книги. Для облегчения жизни читателя великие предки ключевых групп живых организмов так и названы «великими предками», а наши (наши-то нам интереснее всего!) даже «Великими Предками». Особо упорные могут попробовать их посчитать.

Тут мы плавно переходим к следующей сложности – обилию материала. Любитель прошлого должен быть готов помнить великое множество фактов и уметь ими интеллектуально жонглировать. Между прочим, это проблема и для автора: невозможно быть специалистом во всем. Именно поэтому многие крутые палеонтологи отказываются писать обобщающие труды. Специалист по брахиоподам может ничего не знать о звероящерах, палеоботаник мало смыслит в рыбах, знаток грызунов не отличит конфуциосорниса от энанциорниса. А куда деваться! Специализация – не повод не писать обобщающих книг. Я – автор труда, который вы держите в руках – антрополог, то есть специалист по человеку. Но я же и биолог, то есть общая логика исследования в других биологических специальностях мне известна. И всегда надо помнить, что планета у нас не такая уж большая, биосфера на ней одна, взаимосвязи и взаимовлияния не случайны. Прошлое человека сложилось из нужд и сложностей наших предков, живших от докембрия до наших дней. На наше появление и особенности повлияли условия на первоземле и дрейф континентов, кометы и астероиды, солнечная активность и геологические процессы, конструкция раковины первых моллюсков и специфика корней примитивных растений, тип размножения подёнок и злоба хищных динозавров, симбионты в кишечнике термитов и красота цветов, несовершенство лап креодонтов и совершенство кошек… Все это и многое другое – наше прошлое, без этого человек или вообще не появился бы, или был бы совсем иным. Так кому же, как не антропологу, писать обзор живого прошлого Земли?!

Палеонтология

Для начала стоит определиться с понятиями. Как уже говорилось, многим представляется, что палеонтология – «наука о динозавриках». Но нет.

Палеонтология – наука об органическом мире прошлого и условиях его существования.

Палеонтология – наука об органическом мире прошлого и условиях его существования. В этом кратком определении важны обе составляющие. Во-первых, палеонтология изучает все жившие раньше организмы, а не только животных. Например, изучением царства животных занимается палеозоология, которая сама делится на много частей: насекомых изучает палеоэнтомология, рыб – палеоихтиология и так далее. Царство растений – вотчина палеоботаники, а для водорослей внутри нее предусмотрена палеоальгология. Не менее существенна и вторая часть определения палеонтологии: изучение условий существования древних живых существ – принципиальный раздел этой науки. «Отчего и почему» бывают гораздо интереснее, чем «что и когда».

Понятно, что в помощь палеонтологии и неразрывно с ней существуют смежные дисциплины, например, огромный комплекс методов датирования, палеоклиматология и палеоэкология, палеогеография и палеобиогеография и прочие. Огромную важность для палеонтологии имеет геология в самом широком смысле этого слова. Профессиональному палеонтологу не мешает знать химию. Хорошо бы еще уметь работать руками – как в поле геологическим молотком и кайлом, так и в лаборатории хитрыми растворами, препаровальной иглой и бинокуляром, а нынче и более технологичными инструментами – электронным микроскопом, томографом, хромато-масс-спектрометром и секвенатором.

Собственно, труд палеонтолога состоит из трех основных стадий.

Поиски и раскопки. Для начала надо найти место, где сохранились ископаемые остатки. Иногда это бывает итогом счастливой случайности: при работах в карьере или шахте, рытье котлована или распашке земли, обрушении склонов или размывании оврагов на поверхность «всплывают» слои с окаменелостями. Если нашедший их достаточно грамотен, он сообщает о находке в институты и музеи, откуда специалисты спешат к месту, пока уникальные артефакты не уничтожены силами природы или усилиями людей. Но и сами палеонтологи предпринимают активные усилия для поисков: каждую весну и осень, когда земля свободна и от снега, и от травы, поисковики ползают по балкам и каменным стенам, пляжам и пустыням, тщательно осматривая все потенциально богатые места. Ясно, что не всегда этот энтузиазм понятен местным жителям. Каждому палеонтологу (кстати, и археологу) до боли знакомы фразы «что, золото-то уже нашли?» и «что, оружие ищете?» Переубедить вопрошающих иногда невозможно. Не может же взрослый человек всерьез искать окаменевшие кораллы и кости?..

Но современные палеонтологи идут дальше. Геологи в XIX и особенно XX веке отлично поработали: практически для всех территорий давно составлены подробные геологические карты с указанием выходящих на поверхность пород, их возраста и особенностей формирования. Так что палеонтолог может фактически на заказ искать то, что его в данный момент интересует. Уже классический пример – поиски переходной фазы между рыбами и амфибиями: исследователи посмотрели по геологической карте, где залегают наиболее богатые выходы девонских мелководных и пресноводных отложений, поехали туда и спустя пару сезонов нашли-таки скелет тиктаалика.

Сами раскопки могут выглядеть очень по-разному. Въевшийся стереотип о помавании кисточкой – на 99 % миф. Даже само слово «раскопки» не слишком отражает реальность. Порой «раскопки» – это промывка песка из какого-нибудь ручья ситом по методике золотоискателей прошлого; так, например, в среднерусских речках отлично находятся зубы мезозойских акул. Иногда это могут быть поверхностные сборы, если камни сами крошатся и их можно даже не особенно колоть молотком. Иногда, напротив, приходится изрядно попотеть и помахать киркой или задействовать экскаваторы и бульдозеры. Один большой скелет динозавра или слона ученые могут расчищать много лет подряд, особенно в высоких широтах, где полевой сезон короток. В приполярных областях Сибири, Аляски, Канады и в Антарктиде сезон совсем махонький, туда трудно добраться, а порой еще труднее оттуда выбраться. Тамошние раскопки – суровый экстрим.

Бывают, конечно, и райские условия. Например, над уникальным местонахождением меловых птиц в Чаояне китайцы построили огромадный купол-павильон, да еще в виде скелета, так что ученые могут спокойно и комфортно работать там круглый год. Встречаются и совсем странные способы добычи ископаемых. Например, в Бирме местные жители вымывают бесконечное число мелового янтаря, который содержит уникальнейшие включения – от растений, пауков и насекомых до ящериц, энанциорнисов и частей динозавров. Исследователи сами не ищут янтарь, а покупают его на местных рынках; что ни год, выходит десяток сенсационных статей по материалам из бирманского янтаря. На юге США в пустынях роль бирманских крестьян выполняют муравьи: отчего-то им очень нравятся зубы мезозойских млекопитающих, которые они тащат в муравейники. Палеонтологи давно прочухали эту особенность трудолюбивых насекомых и нагло разоряют их жилища, добывая сразу готовую коллекцию (и ученых можно понять – попробуйте-ка на пятидесятиградусной жаре поползать по каменистой пустыне в поисках зубов, которые глазом-то трудно различить). В некоторый момент пришлось даже вводить ограничение на число раскапываемых муравейников, чтобы алчные исследователи не извели бедняг мурашек под корень.

Реставрация и препаровка. Принесенные в лабораторию образцы обычно еще надо долго чистить, этим занимаются специалисты-реставраторы. Между той трухой, что найдена, и той красотой, что предстает в витринах музеев, на страницах статей и книг – огромная дистанция. Препарирование – отдельный вид искусства, для него нужен талант, невероятное терпение, надежные руки и много знаний. Крутые реставраторы уникальны и идут нарасхват. Иногда очистка сложного образца занимает не то что год, а годы. Бывает, что вмещающая порода прочнее самой окаменелости, тогда приходится задействовать не только стоматологические буры и пилки, но и кислоты и прочие химикаты. Иногда образец даже намеренно разрушают, например пилят и зашлифовывают, чтобы получить ценную информацию. Классикой стали работы по кровеносной и нервной системам панцирных рыб, когда их черепа шлифовались с маленьким интервалом, каждый шлиф подробнейше зарисовывался, а в итоге получалась стопка рисунков – трехмерная модель черепа со всеми мельчайшими канальцами. Нынче, напротив, проще бывает вообще не доставать образец из камня, а просветить его томографом; полученная информация может оказаться богаче, чем при очистке. Понятно, широко используется микроскопирование. Один из впечатляющих методов – золотое напыление на особо мелкие образцы для повышения контрастности. Золотые зубы силурийских рыб – это не только научно, но и красиво-богато.

Реконструкция, интерпретация, публикация и обсуждение. Главное в работе палеонтолога, конечно, – понять, что, собственно, попало в его руки, и почему оно когда-то было таким, а не иным. Обычно окаменелость не целая, тогда надо попытаться реконструировать недостающие части; тут исследователя ждут коварные ловушки, примеры которых еще будут приведены в книге. Важнейшая часть исследования – подробное описание; в скучном варианте на нем все и заканчивается. Но хорошо бы продвинуться дальше и объяснить, что довело древнее создание до жизни такой, а зачастую и до вымирания. Тут важно, с одной стороны, включить воображение, а с другой, – держать его в узде и разумных рамках. Совсем без интерпретации пропадает смысл науки, но и безграничное фантазирование бессмысленно. Придумать можно что угодно, а доказать – только реальность. Нам надо не придумать, как могло бы быть, а выяснить, как было на самом деле. Конечно, сплошь и рядом встречаются трудные случаи, так что споры ученых не затихают порой годами и десятилетиями.

Чрезвычайно важный момент исследования – публикация результатов, дабы они были доступны как можно большему числу людей. Это – принципиальнейшее условие науки. Именно поэтому не является наукой частное коллекционирование. Бывает, что супер-ценные образцы лежат у любителей в шкафах на полочках, но рано или поздно оказываются в помойке и пропадают, так и не будучи описаны. Случается, что и в музейной коллекции окаменелость покоится много лет, пока до неё дойдут руки, ведь число находок на порядок больше, чем число ученых. Но музейная коллекция по крайней мере никуда не денется, к ней прилагается документация, специальные условия гарантируют сохранность, так что будущие исследователи могут поработать с экспонатами, возможно, применив новые методы. Конечно, иногда и любители могут публиковать статьи, но таких грамотных специалистов, не являющихся профессиональными палеонтологами, во всем мире пара человек. Все же палеонтология – это серьезная профессия, требующая полной отдачи, времени, специальных навыков и знаний, заниматься ей «в свободное от работы время» как хобби почти нереально.

Мораль, думается, ясна: если волей случая вам в руки попал ценный образец, подавите в себе плюшкинизм, отнесите находку палеонтологам, тогда о ней узнаете не только вы, а и весь мир. Для частного же коллекционирования есть миллионы массовых находок, не представляющих эксклюзивного значения для науки.

* * *

В своей работе палеонтологи руководствуются несколькими сравнительно простыми принципами, облегчающими жизнь.

Принцип актуализма. «Настоящее – ключ к познанию прошлого»: признаки современных организмов позволяют реконструировать черты древних существ, то есть это – изучение прошлого с помощью настоящего. Например, если мы знаем, что панцирь современных черепах нужен им для защиты, то легко догадаться, что той же цели служил панцирь панцирных рыб, некоторых текодонтов, панцирных динозавров, ископаемых броненосцев и прочих подобных тварей. Если огромные клыки современных львов и леопардов нужны для убивания и разрывания добычи, то логично, что так же применялись клыки звероящеров.

Принцип историзма. «Прошлое – ключ к познанию настоящего»: выявление исторических предпосылок современности, то есть изучение настоящего с помощью прошлого. Все произошло на какой-то основе с исходно другим предназначением. Например, существование и строение жабр у наших предков-рыб объясняют примерно половину нашего строения и поведения. Не зная эволюции жаберного аппарата, затруднительно объяснить анатомию наших челюстей, желёз, многих мышц, а также, скажем, зевоту. Одно из ключевых понятий тут – преадаптация, то есть ситуация, когда некая черта возникла для одной какой-то надобности, но в новых условиях пригодилась совсем для другой. Например, исходные плавниковые складки первых девонских рыбообразных были нужны для того, чтобы держать равновесие и не слишком кувыркаться в воде, потом в ордовике они начали ундулировать – волнообразно изгибаться – и стали дополнительным двигателем, после в силуре разделились на плавники, затем в кистепером виде они оказались удобны для переползания через бревна, заваливавшие дно мелких девонских водоемов, преобразовались в передние и задние конечности наземных амфибий и рептилий, у млекопитающих пригодились для лазания по ветвям, а в конце миоцена задние стали у нас ногами, а передние – руками, которыми я сейчас пишу эти строки. Каждая стадия была необходима для последующей, а ее особенности определяли странности конструкции нового органа у потомков. Эволюция ничего не создает на пустом месте, а смена назначения органов бывает весьма неожиданной. «Я тебя слепила из того, что было» – главный девиз процесса.

Принцип историзма более чем срабатывает и в концептуальных моментах. Например, слияние всех кусков суши в Пангею в перми стало причиной похолодания и поводом для возникновения теплокровности у зверозубых рептилий, а вымирание динозавров в конце мела явилось достаточной причиной последовавшего всплеска разнообразия млекопитающих.

Морфофункциональный анализ – изучение древнего организма в связи с его образом жизни. Признаки «заточены» под конкретные условия, а смена условий вызывает смену признаков. Классический пример – описанная В.О. Ковалевским эволюция лошадей. Древнейшие палеоценовые и эоценовые предки жили в лесах, у них были низкие бугристые коронки зубов, приспособленные для пережевывания плодов и листьев, и много растопыренных пальцев на коротеньких ножках, чтобы не слишком вязнуть в сырой и рыхлой почве, усыпанной прелыми листьями. Далее леса постепенно сменялись кустарниковыми зарослями и степями, в пище увеличивалась доля злаков, отчего зубы стали высококоронковыми и гребнистыми, а ноги менялись под более сухую землю равнин – стройнели и прочнели, а число пальцев сокращалось вплоть до одного.

Другой пример, вокруг которого до сих пор бушуют споры, – образ жизни тираннозавридов. Всякий знает, что огромные тероподы были ужасными хищниками, не дававшими проходу травоядным динозаврам. Однако исследование пропорций слепков их мозга – эндокранов – показывает, что тираннозавриды имели очень плохое зрение и слух – пупырышки этих центров еле возвышаются; ассоциативные, то есть мыслительные, центры развиты слабо, зато обонятельные луковицы велики. Их челюсти были слабы на боковые нагрузки, зубы еле-еле держались в челюстях, так что сопротивляющаяся добыча, тем более крупная, просто переломала бы им весь рот. Ноги не были приспособлены для быстрого бега и маневрирования, так что убежать от них было не так уж сложно, вопреки сцене из «Парка Юрского периода», где тираннозавр без особого труда догоняет машину на скользкой от дождя дороге. По итогу, весь комплекс – подслеповатый, глуховатый и туповатый, медленный и непрочный, зато отлично нюхающий и способный раскусить что угодно, главное, чтоб оно не дрыгалось – скорее типичен для падальщиков, а не активных охотников. Впрочем, надо учитывать, что добыча-то тоже была чрезвычайно медленной, огромной, то есть очень заметной даже издалека, и довольно вялой, так что при таком раскладе тираннозавриды вполне могли быть хищниками. Только вот эпичные битвы с рыком и прыжками, столь любимые мультипликаторами – чистой воды фантазия. Тормознутость битвы тираннозавра и какого-нибудь травоядного динозавра трудно себе представить; для первого приближения можно посмотреть на сражения каймана и анаконды, крокодила и черепахи, ужа и лягушки.

Конечно, всегда стоить помнить, что ископаемые существа – не копии современных, иногда они бывают оригинальны и на первый взгляд противоречивы. Скажем, халикотерии – представители непарнокопытных, имели на пальцах когти, причем раздвоенные. Если бы были найдены только обломки этих когтей, можно было бы подумать, что они принадлежат хищному зверю. Но нет, зубы и все прочие признаки, без всякого сомнения, относят халикотериев к растительноядным. Когти эти странные животные использовали для пригибания ветвей деревьев. Если же вникнуть в детали строения халикотериевых когтей, то не так сложно понять, что они были все же ближе к копытам. Прямо противоположный пример: мезонихии имели на пальцах копыта, хотя по всем остальным признакам – особенно по строению челюстей и зубов – они, несомненно, относятся к хищникам.

Вывод прост: чем больше данных, тем лучше. Не стоит делать далеко идущих выводов по единичным фрагментарным находкам, на таком не раз попадались даже лучшие умы прошлого, не надо наступать на те же грабли. Благо, сейчас информации у нас просто гигантское количество, и она продолжает поступать невероятными темпами.

«Взятие в скобки». Изучение древнего организма в сравнении с более и менее примитивными формами. Современная наука уже более-менее разобралась с порядком возникновения разных существ, к тому же, что приятно, многие из них имеют современных потомков. Логично предположить, что промежуточные вымершие формы должны иметь промежуточные черты. Например, среди архозавров крокодилы – очень примитивные, отделились от общего ствола текодонтов весьма рано, птицы – самые продвинутые, обособились последними, а динозавры находятся на филогенетическом древе примерно посередине, хотя они и не потомки крокодилов и не факт, что предки птиц. Ещё есть птерозавры, чья ветка ответвляется после крокодилов, но до динозавров. Зная особенности крокодилов и птиц, можно строить гипотезы об особенностях птерозавров и динозавров. Конечно, такой подход должен учитывать, что современные примитивные формы (те же крокодилы) совсем не копии ископаемых прототипов, а имели свою долгую эволюцию; и уж подавно сильно изменились продвинутые группы.

* * *

Тафономия – раздел палеонтологии, изучающий пути образования ископаемых – фоссилий. Термин введен советским палеонтологом И.А. Ефремовым.

Ископаемые достаются ученым в разном виде.

Окаменение (петрификация) и замещение: в этом случае органика разрушается, а вода, содержащая минеральные компоненты, заполняет все полости и поры, где минералы отлагаются, создавая каменистые фоссилии. Понятно, что обычно окаменевают только самые прочные части, например кости, но изредка, при хорошей концентрации минерального раствора, петрифицируются мышцы и даже такие эфемерные части, как язык, нервы и глаза. Иногда по пути окаменевающие элементы заметно деформируются, искажаются и сплющиваются самым причудливым образом. Качество окаменения бывает разным – от слабооформленных чурок, лишь в общих чертах напоминающих исходный объект, до клеточной точности, что позволяет оценить уровень обмена веществ и даже прикинуть размер генетического аппарата. Чрезвычайно ценный вариант окаменелостей – микрофоссилии: одноклеточные водоросли, микроскопические раковинки простейших, споры и пыльца растений. По ним идеальным образом восстанавливаются климатические колебания; по большому счету, по ним проводятся и границы геологических периодов.


1. Мертвое животное опускается на морское дно.


2. Трупоеды и бактерии вскоре очищают его скелет от плоти.


3. Сверху образуется осадочный слой.


4. Растворенные в воде минеральные вещества просачиваются в горную породу и останки животного.


5. Вода вытесняется из породы. Минеральные вещества замещают костное вещество в костях.


6. Миллионы лет спустя горная порода становится сушей. Стихия разрушает ее, обнажая скрытые в ней окаменелости.


Замещающие породы тоже бывают разными. Особенно впечатляют окаменелости, выполненные пиритом – выглядят они, как золотые. В Австралии знамениты переливающиеся всеми цветами радуги кости динозавров, замещенные опалом. В канадской Альберте перламутр аммонитов стал аммолитом – зелено-желто-оранжевым минералом невероятной красоты.


Окаменелый скелет динозавра


Копролиты – окаменевшие экскременты, то есть какашки – не самый привлекательный, но богатый информацией вид фоссилий. По ним можно проследить детали диеты и иногда поведения древних животных. Часто внутри копролитов сохраняются косточки, чешуя и даже окаменевшие шерстинки, а изотопный анализ позволяет уточнить содержание разных типов органики в пище. Угадать, кто же нагадил миллионы лет назад, бывает непросто. Хорошо с акулами: благодаря спиральному клапану в прямой кишке их завитые копролиты крайне характерны. А вот кому принадлежат копролиты в виде звездочек из пермских отложений Пермской области – до сих пор неизвестно; зато как красиво можно назвать это таинственное существо – «Астрофекалис мирабилис».

Обугливание – довольно частый вариант фоссилизации, при котором нестойкие органические компоненты исчезают, но углеродная, то есть углистая составляющая остается. Понятно, что чаще и легче это происходит с растениями: в гигантских залежах бурого и каменного угля регулярно встречаются обугленные стволы, корни и листья деревьев.

Отпечатки образуются, когда организм падает на песок или впечатывается в него; последующие отложения покрывают его, так что, когда палеонтолог раскалывает плитку песчаника, получается отпечаток и противоотпечаток. В зависимости от грубости породы разрешение будет разным. Если осадок был очень мелкий, сохраняются детали строения ножек и крыльев насекомых, мельчайшие прожилки листьев растений, семена и чешуя рыб в желудках животных. На отпечатке мезозойской птицы Archaeorhynchus spathula удалось проследить даже тонкости строения легких. Различаются и размеры отпечатков: чаще это не очень большие фрагменты тонких объектов, например, бесскелетных организмов, листьев и кожи, но встречаются и огромные отпечатки листьев, целых ихтиозавров, птерозавров, птиц и зверей. Иногда внутри отпечатка консервируются органические вещества, которые, позволяют, например, определить родство эдиакарских загадочных тварей или цвет кожи и перьев мезозойских рептилий и птиц. Самые знаменитые местонахождения самых впечатляющих отпечатков – Золенгофен и Мессель в Германии и Джехол в Китае.


Отпечаток растения


Полости, слепки и ядра получаются, когда остатки живых существ погружаются в полужидкий осадок, после чего органика сгнивает или растворяется, оставляя полости. Эти пустоты могут сохраниться, а могут заполниться новым плотным осадком. Иногда в последующем разрушается уже окружающая порода, так что нам достаются объемные слепки древних организмов. Обычно это происходит с раковинами и частями деревьев, но известны прецеденты слепков даже носорогов. Особый вариант слепков – эндокраны – отливки мозговой полости, которые могут образовываться сами собой, а при надобности изготавливаются уже самими палеонтологами. К сожалению, эндокраны не отражают всех деталей строения мозга, на них обычно не видно борозд и извилин, но общую форму и пропорции они передают.


Эндокран древнего человека из Гановце


Следы, ходы и норы изучаются особым разделом – ихнологией. Эта область весьма специфична и очень важна, так как позволяет наглядно увидеть поведение древних животных, например, взаимодействие хищников и их добычи. К сожалению, довольно редко можно соотнести следы ног и отпечатки и кости тех, кто их оставил, так что для следов существует отдельная номенклатура – выделяются ихнотаксоны (кстати, такая же ситуация существует с яйцами – их называют своими именами, которые редко прямо увязываются с теми, кто яйца отложил).

Полости в янтаре – один из самых красивых вариантов фоссилизации. В смоле, вытекавшей из деревьев, вязли древние насекомые, пауки, частички растений, ящерицы, перья птиц и прочие мелкие штуки. Смола затвердевала и становилась янтарем, внутри которого все эти чудеса застыли как пустоты с минимумом высохшей органики. Благодаря идеальному обтеканию смолой в янтаре видны наимельчайшие детали строения. К сожалению, надежды на то, чтобы там сохранилась ДНК, как это показано в фильме «Парк Юрского периода», не оправдались.


Битумизация – консервация в естественном парафине, асфальте и озокерите. Самые известные жертвы асфальта – мамонты, смилодоны, волки и гигантские грифы из Ранчо ла Бреа в Калифорнии. Самые впечатляющие находки – куски туш мамонта и шерстистых носорогов из Старуни на Западной Украине. Правда, они же – и самые несчастные: части мамонта и первого носорога были выброшены на свалку, а из шкур незамысловатые добытчики озокерита, принявшие их за волов, пытались шить обувь. Чуть больше повезло второй туше носорога, почти идеальной сохранности, чучело с которой до сих пор хранится в музее, хотя нормального исследования находки так никогда и не было сделано.


Насекомое в янтаре


Замораживание, высушивание (мумификация), засаливание – почти идеальные варианты. Все слышали про замороженных мамонтов из Сибири, на телах которых сохранились мышцы, кожа и шерсть, в коже – личинки оводов, внутри рта и желудка – трава. Как ни странно, единственное, что так и не сохранилось – это клетки. В процессе заморозки кристаллы льда порвали все мембраны, так что до сих пор ни одной целой клетки так и не было найдено. А это важно, так как цитоплазма столь же необходима для клонирования, как и ДНК, которая для мамонтов уже полностью расшифрована. Конечно, замороженными находят не только мамонтов, но и шерстистых носорогов, бизонов, лошадей, росомах, пещерных львят и прочих существ – в настоящее время таких находок сотни. Просто на мамонтов обращают гораздо больше внимания. Кого привлечет мороженый суслик? А голая амеба, актиномицет или гигантский вирус? А меж тем все они найдены в плейстоценовых льдах. Самые удивительные находки с Колымы – семена растения смолевки узколистной Silene stenophylla и нематоды Panagrolaimus aff. detritophagus и Plectus aff. parvus; их удалось оживить спустя, соответственно, 31,8 и 41,7 тысяч лет! Замороженные растения и тела животных найдены и на Аляске, хотя в меньшем количестве (соответственно меньшему размеру самой Аляски).

Несколько реже встречаются высушенные мумии – такие известны из пустынь Центральной Америки (куски шкур гигантских ленивцев), а также пещер Новой Зеландии (ноги и головы птиц моа). Засаливание идет параллельно с высушиванием в пустынях Австралии (части тел дипротодонов) и Центральной Азии (человеческие мумии из Тарима в Китае и Чехрабада в Иране). Такие находки имеют совсем небольшой возраст, обычно уже голоценовый. Впрочем, соляным растворам принадлежит и абсолютный рекорд по оживлению древних организмов – галофильных архей Halococcus salifodinae из Австрии, существовавших 250 млн л. н.!

Маленькая тонкость

Всегда возникает вопрос: если найдены мороженые мамонты, то где мороженые люди? Самый известный и самый древний «ледяной человек» из Альп – Этци – жил 5,3 тыс.л.н. Наверняка живущие и работающие в тайге и тундре люди иногда находят и более древние тела, может быть, даже неандертальцев и денисовцев, но, думается, в этом случае их либо хоронят, не разобравшись, либо стараются никому не сообщать, боясь судебного преследования.

Halococcus salifodinae


Фоссилизация может происходить быстро и медленно, но обычно – быстро, так как иначе бактерии успеют разложить органику на неорганические составляющие. Скорость зависит от специфики вмещающих пород и концентрации минеральных веществ в воде. С одной стороны, отдельные белки могут сохраняться миллионы лет, молекулы ДНК выделены из костей Homo heidelbergensis из Сима де лос Уэсос с древностью 427 тыс.л.н. С другой стороны, порой минерализация занимает считанные дни. Например, в московской канализации в XX веке находились окаменевшие тапочки и кошки того же XX века производства, причем окаменевала даже шерсть бедных животных.

Кроме отдельных фоссилий, тафономия изучает и целые захоронения, особенности их формирования и структуру. Для образования палеонтологического местонахождения необходимы четыре этапа. Во-первых, остатки организмов должны сконцентрироваться в каком-то месте; иногда это происходит во время массовой гибели, иногда остатки просто сносятся водой в какую-нибудь заводь или скапливаются в ямах, оврагах, пещерах, даже пнях. Во-вторых, аккумулированные остатки должны быть достаточно быстро захоронены в осадке. В-третьих, должна произойти фоссилизация – превращение в окаменелости. В-четвертых, уже в современности вышележащие отложения должны быть так или иначе разрушены, чтобы мы могли добраться до окаменелостей. Все эти этапы обязательны и должны сменять друг друга строго последовательно; выпадение хотя бы одного ведет к нарушению всего цикла. Например, если организмы не будут быстро захоронены в осадке, то они разрушатся; если они не фоссилизуются, то тоже исчезнут без следа; если разрушение отложений произойдет до фоссилизации, то мы ничего не найдем.

Ясно, что столь счастливое стечение обстоятельств – чтобы и организм попал куда надо, и никто его не съел, и концентрация минеральных веществ в воде была оптимальной, и все это пролежало до современности и не развалилось, и оказалось в доступном человеку месте, и мы еще это нашли, да еще чтоб нашел не кто-нибудь, а нормальный палеонтолог – все это крайне маловероятно. 99,99 % организмов без следа разрушаются, а их вещество возвращается в общий круговорот. Отсюда неизбежно вытекает неполнота палеонтологической летописи. Иначе и быть не может, а то бы мы ходили по скелетам, да и из какого такого вещества состоял бы у нас организм, если бы все предыдущие сохранялись?

Так что, как ни прискорбно, палеонтологам никогда не светит найти представителей всех ископаемых организмов. От большинства видов не сохранилось вовсе ничего, от многих – единичные и притом фрагментарные находки. Впрочем, есть и счастливые исключения, когда обнаруживаются просто грандиозные слои древесины, раковин, скелетов, отпечатков и прочих фоссилий. Некоторые даже добываются промышленным способом. Каждый год в печах сгорают миллионы отпечатков в каменном угле. Известняки, из которых построено огромное количество сооружений по всему миру, не что иное, как концентрат фоссилий. В стенах многих зданий и метро не так сложно найти членики морских лилий, а иногда и раковины аммонитов. Даже банальный писчий мел, изводимый в школах тоннами, – прессованные ископаемые, хотя бы и одноклеточные. Но и крупнокалиберные, вполне коллекционные фоссилии бывают бесчисленны: тысячами на продажу добываются мадагаскарские аммониты, марокканские трилобиты, китайские нотозавры и вайомингские рыбки.

Для обозначения разных фаз и вариантов местонахождения придуманы умные слова.

Танатоценоз – скопление мертвых организмов или их частей. Танатоценозы могут быть автохтонными – захороненными в месте их гибели, или аллохтонными – перемещенными к месту захоронения.

Тафоценоз – древний танатоценоз, претерпевший захоронение в породе.

Ориктоценоз – совокупность остатков организмов, изучаемая исследователями. Часто этим же словом обозначают просто список определенных таксонов из конкретного местонахождения. Тонкость в том, что часто какая-то часть тафоценоза до поры до времени ускользает от внимания ученых, в последующем же, с применением новых методик и подходов, ориктоценоз может неожиданно увеличиться, даже без дополнительных раскопок. А может и уменьшиться, если дополнительные исследования покажут, что множество ранее выделявшихся видов на самом деле представляют собой одно и то же. Такое происходит сплошь и рядом.

* * *

Геохронологическая, или стратиграфическая шкала – великое расписание времен, последовательность эпох от появления Земли до современности. Все время существования планеты для удобства делится на отрезки, внутри разделенные на более дробные подразделения.

Акротемы, или акроны – самые длинные отрезки, выделяющиеся далеко не всегда, актуальные лишь для дремучих докембрийских времен, где их обычно насчитывают два-три: катархей, архей и протерозой; иногда они не отличаются от эонов.

Эонотемы, или эоны – тоже грандиозные этапы. Иногда их выделяют всего два – докембрий и фанерозой. Впрочем, подразделения докембрия – гадей, архей и протерозой – тоже порой считаются эонами, а иногда за таковые идут внутренние подразделения архея и протерозоя (если их считать акронами) – ранне- и позднеархейский, а также ранне- и позднепротерозойский.

Маленькая тонкость

Почти любой отрезок делится на «нижний», «средний» и «верхний» или «ранний», «средний» и «поздний». Тонкость заключается в том, что «нижний – верхний» относится к стратиграфии, геологическому расположению в ненарушенных отложениях, а «ранний – поздний» – ко времени. Обычно слова «нижний – ранний» и «верхний – поздний» используются как синонимы, но разницу лучше в уме держать. Аналогично отличаются пары понятий «эратема – эра», «система – период», «отдел – эпоха» и «ярус – век»: первые термины в парах относятся к геологии, вторые – к хронологии. В ярусе окаменелости залегают, в веке существа жили.

Эратемы, или эры – гораздо более стабильное понятие. Правда, для докембрия по-прежнему есть разнобой в разных схемах, но внутри фанерозоя всеми выделяется три эры – палеозойская, мезозойская и кайнозойская.

Системы, или периоды – самые ходовые отрезки с наибольшей стабильностью в разных схемах. Иногда внутри них выделяются еще и подсистемы, но тут согласия меньше. Внутри палеозоя шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный (карбоновый) и пермский. В мезозое три периода: триасовый, юрский и меловой. В кайнозое тоже три: палеогеновый, неогеновый и четвертичный (антропогеновый).

Отделы, или эпохи – еще более мелкие и на практике не всегда хорошо определимые отрезки. Большинство периодов разделяются на нижнюю, среднюю и верхнюю эпохи; у некоторых нет средней, у некоторых названия оригинальнее; кайнозойские иногда дополнительно делятся на подотделы.

Ярусы, или века – самое мелкое подразделение, длиной от двух – пяти до десяти миллионов лет, редко больше. К тому же они иногда подразделяются на подъярусы, значимые, правда, уже только для региональных шкал. Теоретически ярусы должны быть самыми актуальными измерителями времени, но в реальной работе далеко не всегда возможно установить, к какому ярусу относится конкретный слой или, подавно, отдельная окаменелость. Особенно обидно, что часто возникают сложности соотнесения ярусов, установленных в разных странах по разным критериям.

Всегда важно помнить, что все указанные подразделения в любом случае условны. Лучшее тому доказательство – сравнение хронологической протяженности разных отрезков: чем период древнее, тем он в среднем длиннее. Например, кембрийский и юрский периоды тянулись по 56 миллионов лет, девонский и карбоновый – по 60, меловой – 79, а эдиакарский и вовсе 94! В то же время вся кайнозойская эра заняла 66 миллионов лет, а четвертичный период длится каких-то несчастных 2,58 миллиона – меньше большинства ярусов. Такая несуразица выросла из двух корней.

Во-первых, границы этапов часто имеют скорее историческую ценность. Геологи XIX века исследовали конкретные местонахождения, описывали их фауну, сравнивали и пытались расположить слои в закономерном порядке. С тех времен сохранились много странных названий, например «четвертичный период». Дело в том, что в некоторый момент история Земли делилась на четыре периода: первичному более-менее соответствует палеозойская эра, вторичному – мезозойская, третичному – первая половина кайнозоя, а четвертичному – антропоген. Первые три названия поменялись, а последнее упорно держится в стратиграфических шкалах, хотя антропологам, понятно, больше нравится новое название. Ясно, что геологи прошлого имели крайне смутное представление о протяженности выделяемых этапов, считалось, что они укладываются в несколько тысяч или от силы сотен тысяч лет. Ни о какой эквидистантности – равной нарезке по времени – речи не шло.

Вторая причина – неодинаковая осведомленность ученых о разных эпохах. Очевидно, что про более отдаленные времена известно гораздо меньше, про близкие к нам – больше. Разрешающая способность методов сильно неодинаковая. Разобраться, к какому конкретно отрезку, например, девона или силура относятся отложения, бывает очень непросто, тогда как для неогена и антропогена у нас есть огромное количество надежных маркеров. Да и просто самих отложений более поздних времен несравнимо больше. Отсюда вырастает «логарифмическое мышление»: недавним событиям придается больше значения, а древние сливаются в неразборчивую серую массу. Другое следствие – представление об ускорении эволюции при приближении к современности. Детали событий старины глубокой ускользают, потребности тогдашней жизни могут быть совершенно нам непонятны, тогда как мельчайшие события вчерашнего дня приобретают глубокий смысл и вселенскую важность. Кажется, что в палеозое сотни миллионов лет вяло суетились одинаковые трилобиты и росли одинаковые кораллы, а вот в последние-то сто тысяч лет вон сколько видов млекопитающих поменялось! А то, что трилобиты внутри себя и кораллы друг от друга отличаются порой гораздо больше, чем самые несхожие млекопитающие, понятно только специалистам по трилобитам и кораллам.

Важно понимать и сам принцип проведения границ между эпохами. В подавляющем большинстве случаев это делается по руководящим ископаемым – характерным для разных периодов живым организмам. Чаще всего в качестве таких руководящих выступает какая-нибудь многочисленная и быстро эволюционирующая мелочь типа фораминифер, радиолярий, трилобитов, брахиопод, аммонитов, двустворок, граптолитов, конодонтов и спор растений. Например, в касимовском ярусе карбона обнаруживается комплекс аммонитов Dunbarites-Parashumardites, а в гжельском – Shumardites-Vidrioceras; роудский ярус перми содержит зубчики конодонтов Jinogondolella nankingensis, а последующий вордский – Jinogondolella aserrata. Смена родов и видов морских животных чутко отражает изменения температуры воды, иногда ее микроэлементного состава, освещенности и прочих показателей среды. Наземная флора и фауна обычно более стабильны, да и материалов по ним меньше, так что они гораздо реже выступают в роли руководящих ископаемых.

В идеале выбираются такие руководящие ископаемые, по которым есть богатые данные о промежуточных предшествующих формах, то есть те, время появления которых гарантировано (привет креационистам, вещающим об отсутствии переходных форм). Определяется только нижняя граница хронологического этапа, то есть время появления нового комплекса организмов (только начало олигоцена маркировано вымиранием фораминифер Hantkeninidae), так как в последующем отдельные виды могут вымереть и не дожить до конца эпохи, а другие, напротив, пережить ее и продолжиться в следующей. Это же значит, что важнее присутствие руководящего ископаемого, чем отсутствие: если уж кто-то возник в определенное время, его не найти в более древних слоях; кроме того, руководящие ископаемые просто могут не сохраниться в этом конкретном слое, или мы их пока не нашли. Впрочем, ясно, что нижняя граница одного отрезка автоматически означает верхнюю для следующего.

Поскольку границы проводятся по появлению фауны, то не стоит удивляться, что почти каждый период заканчивался вымиранием. Многим это представляется просто каким-то проклятием: «Да что ж такое?! Только кончится период, как все вымирают!» На самом деле, логика проста: возникновение новых групп обычно вызвано сменой условий, да к тому же новичкам необходимы свободные экологические ниши, а освобождение таковых обычно происходит из-за вымирания, которое, конечно, вызвано той самой сменой условий.

Понятно, что живых существ сонмы, эволюционировали они не слишком синхронно, на чьи проблемы надо обращать больше внимания – вопрос философский. Проводились даже эксперименты, когда одни и те же образцы, скажем, границы мезозоя и кайнозоя, предоставлялись разным исследователям для анализа. Результат был забавен: ученые, обращая внимание на разные окаменелости, проводили границу эр в разных местах стратиграфической колонки. Конечно, разница была не слишком принципиальная, но все же расхождение на сотни тысяч и даже миллионы лет не так уж мало. А речь, между прочим, про то самое знаменитое позднемеловое вымирание, когда на планете исчезли динозавры, якобы из-за падения астероида.

Ясно, что в разных частях планеты фауна могла меняться неодновременно, руководящее ископаемое могло возникнуть в одном месте, а спустя миллионы лет мигрировать в другое, ставя под сомнение наши представления о синхронности отложений. Поэтому в настоящее время все большее внимание уделяется физическим методам – палеомагнитным, хемостратиграфическим и палеоклиматическим.

Те же причины виной расхождению международной и региональных стратиграфических шкал. Планета велика, изменения климата сказывались в разных местах неодновременно и сильно неодинаково, флоры и фауны в разных местах не совпадают, так как в одних регионах могли вымирать, а в других – еще долго сохраняться. Например, нижняя граница касимовского яруса по международной шкале проводится в основном по смене фораминифер и конодонтов, а в российской еще и по аммонитам, отчего граница смещается в древность. Роудский ярус международной шкалы в российской называется казанским, а вордский – уржумским, причем в международном варианте выделяется по конодонтам, а в российском – по остракодам и конодонтам, но уже другим; дело еще и в том, что международная шкала основана на морских отложениях, а в России преобладают континентальные.

Иногда целые ярусы кочуют из эпохи в эпоху: такое происходило, например, с датским, который из позднего мела отправился в палеоцен, приабонским, который из олигоцена уехал в эоцен, гелазским, который из плиоцена перекочевал в плейстоцен.

Иногда сказываются и патриотические настроения геологов и палеонтологов. Так, кептенский ярус международной шкалы у нас зовется северодвинским, вучанский – вятским, гваделупская эпоха – биармийской, а лопинская – татарской. В США своя гордость: американские ученые упорно разделяют классический каменноугольный период на миссисипский и пенсильванский (обидно же, что почти все названия шкалы были даны в XIX веке по европейским областям с типовыми местонахождениями, и более того – о ужас! – российским, а Америка опоздала на раздачу красивых наименований). Долгое время во всем мире это игнорировалось, пока в 2000 году американские геологи не пропихнули миссисипий и пенсильваний в международную шкалу в качестве хотя бы подсистем. Совсем отдельная таксономия сложилась в Южной Америке – как в силу геологической и палеонтологической специфики, так и длительной изоляции местных ученых.

Особенно серьезны расхождения международной и региональных шкал в части подразделения докембрия. Его неустаканенность вызвана малым количеством хороших местонахождений, крайней редкостью и спорностью ископаемых, да и немногочисленностью заинтересованных исследователей. Даже на уровне выделения эонов и эр тут до сих пор, как уже упоминалось, царит полный бардак. Международная шкала докембрия имеет более удобную и унифицированную номенклатуру, чем российская, но границы проведены гораздо формальнее – время просто нарезано на более-менее равные отрезки. Российская выглядит несколько кособокой (рифейский эон является частью позднепротерозойского эона, что само по себе странно; он делится на три эры без периодов и эпох, тогда как остаток позднего протерозоя – вендский период – не относится ни к какой эре, но делится на две эпохи), зато границы в ней гораздо более обоснованы стратиграфически, так как в нашей огромной стране полно отличных и прекрасно изученных разрезов. Китайцам же, понятно, больше нравятся термины «синийский период» и «синийская эра», хотя их границы достаточно неопределенны.

Всё же ученые разных стран пытаются договориться между собой. Созываются международные геологические конгрессы и симпозиумы, собираются комиссии, издаются решения. Ясно, что «международность» – понятие относительное, решения принимают конкретные люди, имевшие опыт исследования конкретных разрезов и специализирующиеся на конкретных группах организмов, но главное – работа идет. Для взаимопонимания необходимо согласие и сотрудничество; важно, что палеонтологи стремятся к этому.

В нашей книге речь пойдет про всю планету, так что повествование будет построено на основе международной шкалы.

Немало сложностей вызывает датирование границ эпох. Для некоторых моментов эти цифры определены достаточно точно, а некоторые находятся под сомнением. Например, до сих пор нет внятной границы между юрой и мелом, хотя, казалось бы, как такое может быть – самые известные периоды и до сих пор не разграничены?! В любом случае важно отметить, что датировки расставляются от нашего времени. Классической ошибкой неспециалистов является автоматическое добавление к дате присказки «до нашей эры». «Наша эра» началась чуть больше двух тысяч лет назад (посмотрите на календарь), но в масштабах десятков и сотен миллионов эта пара тысяч – вообще ни о чем, гораздо меньше погрешности методики определения возраста.

* * *

Дрейф материков – мощнейший процесс, во все времена влиявший на эволюцию жизни на Земле. Сходство очертаний краев Африки и Южной Америки замечали давно – еще А. Гумбольдт и Е.В. Быханов, но эти мысли долго не получали развития. Лишь в начале XX века идею поднял А.Л. Вегенер, а чуть позже довел до ума А. Холмс. В доказательстве реальности материкового дрейфа палеонтология сыграла немалую роль. Древние животные Южной Америки, Африки и Индии оказались необычайно схожи, несмотря на современное разделение этих областей. Более того, такие же чуть позже нашлись и в Австралии и даже в Антарктиде. Да и современные фауны южного полушария имеют ряд явно неслучайных соответствий. В северном полушарии есть свои сходства. За географией и биологией подтянулась и геология, так что в настоящее время известны не только последовательность и направления схождений-расхождений, но даже скорость движения материков.

Кора планеты состоит из множества отдельных литосферных плит, которые вплотную притерты друг к другу, но скользят по расплавленной магме мантии, которая, нагреваясь в глубинах, поднимается, остывает и вновь опускается, приводя в движение исполинские массы породы. Иногда литосферные плиты подныривают под соседние или, напротив, наползают сверху, проваливаются в магму, расплавляясь, или вздымаются к небесам грандиозными горными хребтами. На линии стыков недра могут сотрясаться землетрясениями и прорываться линиями вулканов, а в центральных областях плит сотни миллионов лет царит мир и покой. Понятно, что процесс этот крайне медленный, но и Земля существует четыре с половиной миллиарда лет, так что времени на самые разные комбинации хватало.

География менялась не только из-за движения земной коры. Вслед за солнечными и планетарными пертурбациями температура планеты колебалась, а вслед за этим закономерно увеличивалось или уменьшалось количество воды, свободной и скованной льда-ми. Уровень мирового океана гулял, огромные площади прибрежных низин то затапливались, то высвобождались из-под волн. Перенаправлялись течения и ветры, влажность внутренних областей росла и падала, а живые организмы добавляли преобразований, формируя, разрушая и закрепляя геологические породы, что вело к усилению или ослаблению поступления микроэлементов в океан, отчего фито- и зоопланктон преображался и влиял на атмосферу.

И вот на этом грандиозном фоне жили и развивались наши предки, каждый раз отчаянно пытаясь не вымереть и обскакать конкурентов. И все это – наша история, все это изучает палеонтология.


Часть I. Докембрий: ночь, рассвет

Гадей, или Катархей

4,6 – 4,0 миллиарда лет назад: Появление жизни



Гадей – первые полмиллиарда лет существования планеты, от которых до нас дошли только эфемерные флюиды. Свежая Земля не была похожа на ту планету, к виду которой мы привыкли: сутки по 10 часов, огромная кривая Луна на небе, ядовитая атмосфера и совсем иные горные породы. Тем не менее, именно условия молодой Земли задали все наши особенности, химический состав наших тел, потребности и границы возможностей.

* * *

Первые этапы существования планеты покрыты непроглядным астрономическим мраком. В нашей Солнечной системе нет формирующихся планет, а про инозвездные мы пока знаем слишком мало. Общая космология гласит, что для нашего появления необходимо бытие первых звезд, образование в недрах красных гигантов тяжелых элементов, взрывы сверхновых и разлет элементов по Вселенной, собирание их в новые туманности, звезды и планетезимали, формирование протопланетных дисков и слипание разрозненных ошметков в планеты. Нашей Солнечной системе повезло: само Солнце не слишком холодное и не слишком горячее, а огромные планеты-гиганты на периферии защищают своей гравитацией внутренние области от астероидов и комет. Даже катастрофы были нам на пользу. Столкновение только что остывшей Протоземли с каким-то небесным телом размером с Марс оторвало огромный кусок, отлетевший в сторону и ставший Луной, которая с тех пор стала нашей дополнительной защитницей от астероидов. От удара ось Земли перекосилась, что стало залогом смены времен года. Вулканическая активность создала атмосферу, а вода из падающих комет и выделяющийся из мантии планеты водяной пар сконцентрировались в океанах.

Но это все широкие мазки. Детали картины ускользают, ведь горные породы, из которых была сложена Первоземля, давно успели погрузиться в магму, расплавиться и преобразиться, снова застыв. За колоссальный срок даже элементный состав разных слоев планеты ус-пел поменяться. Нам только кажется, что планета твердая: в масштабе миллиардов лет она вполне жидкая. Тяжелые элементы помаленьку погружаются в недра, а легкие, будучи вытеснены по закону Архимеда, всплывают наверх; самые легкие – свободный водород и инертные газы – не могут быть удержаны слабой гравитацией Земли и улетают в космос, в то же время космическая пыль притягивается и оседает на поверхность планеты. Древнейшие известные земные частицы – кристаллы циркона из Австралии с датировкой 4,404 миллиарда лет назад. Хитрые подсчеты возраста самых старых метеоритов показывают, что Земля сформировалась 4,567, 4,55 или 4,54 млрд л. н., то есть первые 150 миллионов лет напрочь выпадают из нашего знания. А ведь это – временной отрезок как от конца юрского периода до современности!

Тем не менее, что-то мы все-таки знаем.

Судя по нынешним планетам-гигантам, первичная атмосфера Земли содержала много метана и аммиака, поменьше сероводорода, углекислого газа, простейших углеводородов и водяных паров. Кислород, выделявшийся из мантии в процессе дегазации и из воды фотодиссоциацией под действием ультрафиолета, тоже не задерживался, но не улетучивался и не скапливался, а окислял все, что могло быть окислено.

В таких чудесных условиях и возникла жизнь.

Возникновение жизни из неорганических составляющих называется абиогенезом. В школе поныне проходят абиогенез на примере теории А.И. Опарина – Дж. Холдейна: согласно ей, жизнь самозародилась в «первобытном бульоне» в виде коацерватных капель, на которые воздействовали электрические разряды и ионизирующее излучение. Многочисленные эксперименты показали, что, действительно, в смеси, более-менее соответствующей первичной атмосфере и воде Земли, если стучать туда током или облучать ультрафиолетом, сами собой возникают аминокислоты и нуклеотиды, а если добавить немного серы (которая на Первоземле выкидывалась вулканами), то органика собирается в достаточно длинные цепочки.

Современные представления о происхождении жизни гораздо более сложны. Мы не полезем в эти дебри, тем более, что это уже сделано гораздо лучшими специалистами: все желающие могут прочитать чудесные книги Е.В. Кунина «Логика случая. О природе и происхождении биологической эволюции» (2014 г.) и М.А. Никитина «Происхождение жизни. От туманности до клетки» (2016 г.). Отметим только отрадный факт: все ключевые моменты возникновения живого из неживого уже расшифрованы и по частям воспроизведены в лабораториях. Правда с нуля до целой клетки пока никто из экспериментаторов не дошел, но и времени у исследователей было не так много, тогда как в оригинале на это ушли сотни миллионов лет.

Сейчас первые этапы преджизни называются «РНКовым миром», так как первыми действительно важными органическими молекулами были именно цепочки РНК. Аминокислоты тоже существенны, но астрономы обнаруживают их по спектрам даже в межзвездных облаках. Кстати, тут кроется вечная ошибка неспециалистов: многим кажется, что органические вещества обязательно должны быть результатом жизнедеятельности организмов. Нет! Органические вещества – это соединения углерода обычно с водородом и частым включением также кислорода, фосфора, серы и прочих элементов. Это просто сложная химия, которая вполне может существовать сама по себе вне всякой связи с жизнью. И вот один из пиков этой сложности – молекулы РНК – стал основой жизни.

Важное свойство РНК – способность катализировать ферменты. Это сейчас РНК известна больше как переносчик генетической информации, первоначально же не было никакой информации, были просто спонтанно образовывавшиеся молекулы, которые по-разному взаимодействовали. Вариантов РНК было множество, их и сейчас известны сотни. Неустойчивые комплексы разваливались, и мы про них ничего не знаем. Устойчивые же сохранялись, а в силу способности РНК слипаться с аминокислотами и катализировать друг друга увеличивались в числе и сложности. Это называется молекулярной эволюцией.

Замечательное свойство РНК – ее большой размер и сложность. К тому же это полимер, который может иметь неопределенно большую длину, складываясь из нескольких типов стандартных кирпичиков – нуклеотидов (аденин, урацил, гуанин и цитозин). С одной стороны, это некоторым образом гарантирует ее устойчивость и дает много биохимических возможностей взаимодействия с белками, с другой – приводит к почти бесконечной изменчивости. А изменчивость – принципиальное отличие жизни от нежизни. Например, минералы тоже имеют много признаков жизни: они обмениваются веществом с окружающей средой, поглощают что-то извне, растут, размножаются. Но у них слишком малая изменчивость: кристаллическая решетка, какая бы хитрая она ни была, всегда воспроизводится по единому стандарту. Конечно, если кристалл в процессе роста натыкается на препятствие или включает в себя что-то инородное, он может изогнуться и искривиться, но принципиально решетка остается прежней. Правда у минералов есть своя эволюция, связанная с упомянутой выше изменчивостью состава земной коры. В древности формировались одни минералы, потом возникали другие, сейчас такие уже не образуются, но появились иные, однако все это происходит чересчур медленно и пассивно, чтобы называться жизнью. Другое дело РНК: она имеет оптимальный баланс устойчивости и изменчивости, чтобы молекулярная эволюция поспевала за изменениями среды, в том числе вызванными реакциями, катализируемыми самой РНК.

РНК в итоге стала наследственным аппаратом, то есть хранителем информации, а белки – основой цитоплазмы, то есть главным веществом; а наследственный аппарат и цитоплазма – две из трех главных основных составляющих живой клетки. Отсюда вырастают два определения жизни: «способ воспроизведения нуклеиновых кислот» и «форма существования белковых тел».

Однако самое емкое и всеобъемлющее определение жизни: автокаталитическая система высокомолекулярных соединений углерода в неравновесных условиях.

Одно из важнейших условий среды, в которой появилась жизнь – нестабильность. Была бы среда постоянна, ничего бы там не возникало, все лежало бы, застывши навеки. Из состава современных организмов, их потребностей и сравнения существ разной степени продвинутости можно примерно прикинуть микроэлементный состав, температуру, кислотность и прочие показатели места, где возникла жизнь.

Вариантов не так уж мало. Это могла быть «маленькая теплая лужица» (о которой писал еще Ч. Дарвин в 1871 г.), глубоководная впадина около вулкана, «черный» (с железом) или «белый» (с сульфидом цинка) «курильщик», щелочной источник с микрополостями с полупроницаемыми стенками в минеральных постройках, алюмосиликатная глина, грязевой вулкан, гейзер, фумарола. Каждая из версий имеет слабые и сильные стороны, у каждой есть сторонники и противники. Например, версия с океаном хороша химически, но есть сомнения, существовали ли тогда уже океаны? Версии с грязевыми вулканами и гейзерами хорошо согласуются с данными о самых примитивных бактериях и археях, но возникает вопрос: как они могли противостоять мощнейшей радиации, которой тогда подвергалась планета без магнитного поля и озонового слоя? Вариант с глиной хорошо решает проблему закрепления неустойчивых комплексов, но откуда тогда такая зависимость жизни от воды? Впрочем, все эти проблемы принципиально решаемы. Самое смешное, что ученые придумали уже так много способов появления жизни, что становится совсем не странным, что она таки возникла каким-то одним из них.

Один из важнейших этапов появления клетки – обретение мембраны. Возможно, изначально комплексы РНК и белков ютились в микрополостях минералов и лишь потом обрели липидную оболочку. Не исключено, что мембраны были изобретены вообще вирусами – паразитами, неизбежно появившимися сразу после возникновения надежных репликаторов, то есть комплексов, способных самовоспроизводиться. С другой стороны, возможно, А.И. Опарин был не так уж далек от истины и органические молекулы с самого начала варились в коацерватных каплях.

Мембрана – последняя из трех принципиальных частей клетки, создающая градиент концентрации между внутренним содержимым и внешней средой. Она обеспечивает запас потенциальной энергии: сначала клетка с затратой энергии закачивает что-то внутрь или выкачивает наружу против градиента концентрации, тем самым создавая напряжение, а потом, когда нужно, в мембране открываются каналы, вещество со страшной силой устремляется по градиенту концентрации, высвобождая кинетическую энергию, которая может быть использована на мирные цели. Если же концентрация веществ по обе стороны мембраны полностью сравняется, движение прекратится, наступит термодинамическое равновесие, тишь да благодать – клетка умрет.

Вероятно, уже после возникновения клеточной структуры появилась ДНК. Впрочем, есть версия, что ДНК была изобретена вирусами, то есть неклеточными паразитами. Независимо от родословной, ДНК за счет своей двойной спирали оказалась гораздо более устойчивой и надежной, чем РНК, так что в качестве хранителя наследственной информации абсолютно преобладает среди современных живых существ (впрочем, существуют и чисто РНКовые бактерии и вирусы).

Как бы то ни было, где-то в темные катархейские времена на планете возник «Лука»[1]. Его существование вытекает из принципиального сходства всех современных живых существ и универсальности генетического кода (который, правда, не идеально универсальный, но исходно был все же единым), а особенности восстанавливаются путем сравнения разных организмов. Так, из отличий архей и бактерий можно понять, что у Луки уже была ДНК, но не было системы репликации ДНК, причем тимина тоже не было, а ДНК содержала урацил. Мембрана имелась, но не такая, как у современных организмов; возможно, Лука был больше похож на блин, а не на шарик. Вероятно, одного-единственного Луки, в общем-то, и не существовало, а было много изменчивых альтернативных версий, бурно эволюционировавших и щедро менявшихся обрывками генов путем горизонтального переноса. Планета велика, условий на ней много, потребности и сложности везде были разные, так что Лука мог быть не одной клеткой, а огромным сообществом.


РНК


ДНК

Маленькая тонкость

Отдельный вопрос, неизбежно встающий при обсуждении абиогенеза: может ли жизнь возникнуть снова? С одной стороны, условия на планете капитально поменялись, так что в том же варианте второе появление крайне маловероятно. С другой стороны, в новом исполнении – почему бы и нет? Главная проблема – жизнь уже существует. Так что, возникни некий новый вариант первожизни заново, уже имеющиеся существа с удовольствием слопают его, не поморщившись. Не исключено, что так уже не раз происходило, кто знает?

* * *

Гадей задал нам условия жизни. В это время возникли основы основ – РНК и ДНК, белки и воспроизведение первых биологических комплексов и, возможно, первые клетки. Наша углеродная основа, зависимость от воды, азота и фосфора, ключевые принципы обмена веществ и вопроизводства, распространения информации – все это наследие гадея, сплошное гадейство.

* * *
Альтернативы

Ход истории подчинен множеству случайностей. Все могло пойти и не так. Небольшое изменение основных констант – и нашей Вселенной вообще не было бы. Или в ней были бы невозможны элементы тяжелее гелия. Чрезмерная гравитация могла бы не дать разлететься веществу, а слишком слабая не смогла бы собрать вещество в звезды и планеты. Без планет-гигантов Земля была бы беззащитна перед астероидными дождями, без достаточного разогрева не было бы тектоники, без обилия железа в последующем не сформировалось бы ядро и магнитное поле. Момент появления самореплицирующихся молекулярных комплексов аминокислот и нуклеотидов тоже не обошелся без великого везения, а без запасов первичного органического вещества, образовавшегося абиогенным путем, первым протоклеткам было бы нечем питаться. Миллионы подобных Земле планет могут оставаться навсегда безжизненными.

Свойства уже образовавшейся жизни тоже не предопределены. Генетический код мог оказаться иным, чисто химически он ничем не обусловлен, это результат случайности. Число нуклеотидов и аминокислот потенциально гораздо больше, чем есть в наших организмах. Жизнь могла возникнуть и не один раз на одной планете, и конкурирующие варианты с разными нуклеотидами, аминокислотными составами и генетическими кодами могли развиваться параллельно.

С другой стороны, при иных исходных условиях жизнь могла бы зародиться на основе совсем других химических элементов – кремния или азота. В недрах гигантских газовых планет типа Юпитера и Сатурна при огромном давлении и температуре азот потенциально может образовывать огромное количество соединений, вероятно, даже большее, чем углерод на Земле. Такая газовая жизнь принципиально отличалась бы от нашей; даже не факт, можно ли называть ее жизнью. Проблема в том, что чисто физико-химически жители газовых гигантов не могут существовать даже в верхних слоях своей планеты, они ограничены потолком своего мира. Они не могут подняться над облаками и увидеть звезды. Как им узнать, что они живут на планете, одной из миллиардов во Вселенной? И мы не можем опуститься в их обиталище – у нас нет материалов, способных выдержать такие условия и передать оттуда сигнал. Как нам узнать о существовании друг друга, как наладить контакт?

Архей

4,0 – 2,5 миллиарда лет назад: Заря жизни


МЕЖДУНАРОДНАЯ ШКАЛА

4 млрд л. н.: эоархей (3,6) – палеоархей (3,2) – мезоархей (2,8) – неоархей (2,5)


РОССИЙСКАЯ ШКАЛА

раннеархейский эон (3,2) – позднеархейский эон: нижнелопийская эра (3,0) – среднелопийская эра (2,8) – верхнелопийская эра (2,5)



Архей – огромные полтора миллиарда лет, про которые мы очень мало знаем. В это время уже однозначно была одноклеточная жизнь, но только на уровне безъядерных организмов – архей и бактерий. Они оставили немного следов. Наша задача – по микроскопическим пятнышкам и полоскам на камнях понять, что творилось в древних морях.

* * *

Планета продолжала меняться. Предполагают, что на границе катархея и архея Земля была бомбардирована массой астероидов; по крайней мере в лунных кратерах застывшие породы имеют возраст 4,1-3,8 млрд л. н., наиболее вероятно – 3,85 млрд л. н. Возможно, именно из-за этого катаклизма сейчас на планете почти не осталось образцов катархейской коры. Есть даже версия, что первая жизнь была уничтожена «поздней тяжелой бомбардировкой», а в архее зародилась новая; все же более вероятно, что Лука и его потомки просто пережили катастрофу в нетронутых убежищах.

Как выглядела планета в архее, трудно представить. Палеогеографы предполагают, что примерно 3,6 – 3,1 млрд л. н. существовал единый суперконтинент Археогея, или Ваальбара, который развалился и 3 – 2,8 млрд л. н. пересобрался в континент Ур. Впрочем, эти построения крайне гипотетичны; не исключено, что Ваальбара и Ур – одно и то же, а может, одновременно с ними существовали и другие земли.

Погружавшееся в недра Земли железо образовало жидкое ядро, и в силу вращения 3,2 – 3,6 млрд л. н. возникло магнитное поле, уберегающее нас от губительной космической радиации. Без сомнения, это стало неплохим гарантом развития жизни, так как слишком частые нарушения структуры РНК и ДНК не позволяют формироваться устойчивым биохимическим комплексам. До этого жизнь была возможна лишь в хорошо защищенных местах, теперь могла выходить ближе к поверхности, так что в качестве типа питания стал возможен фотосинтез.

Это, кстати, великая проблема: какой вариант потребления вещества и энергии был первичным?

С одной стороны, гетеротрофный тип питания – использование готовой органики – биохимически проще, но откуда тогда бралась бы органика в таких количествах? Впрочем, она могла синтезироваться в достаточных объемах сама собой из неорганики, как это происходило еще даже до появления планеты, например, абиогенным фотосинтезом на сульфиде цинка.

Во-вторых, первыми могли быть хемоавтотрофы, существа типа современных архей, которые из неорганических веществ могут создавать органику, причем первичного ресурса хватало бы, чтобы существовать в таком режиме почти неограниченное время в полной изоляции. Показательно, что одни из самых архаичных современных существ – именно хемоавтотрофы, хотя они все равно используют более сложные биохимические реакции, чем гетеротрофы.

В-третьих, изначальным типом питания мог быть и фотосинтез, подобный тому, что применяют современные цианобактерии. Этот вариант – самый сложный, непонятно, как бы он возник первым, однако древнейшие известные нам живые существа были, видимо, именно фотоавтотрофами.

А в архее мы знаем, собственно, первых живых существ. Древнейшие осадочные породы и древнейшие следы жизни найдены в разных местах: Нуввуагиттук (Канада, 3,77 – 4,3 млрд л. н.), Джек Хилл (Австралия, 4,1 – 4,4 млрд л. н.), Исуа (Гренландия, 3,7 – 3,8 млрд л. н.), Кунтеруна (Австралия, 3,515 – 3,52 млрд л. н.). В столь древних слоях обнаружены даже не отпечатки самих организмов, а следы их жизнедеятельности в виде изменения химии пород. Например, в Нуввуагиттуке это – легкий изотоп углерода в карбонатах, а также гематитовые микроволокна и трубочки, подобные тем, что образуются в результате жизни бактерий.


Дрессер. Строматолиты из западной Австралии


Древнейшие бесспорные прокариоты – безъядерные организмы – заметно моложе: Онвервахт (Южная Африка, 3,5 млрд л.н.), Дрессер, Норт Поул (Австралия, Пилбара, Варравуна, 3,47 3,496 млрд л.н.), Тауэрс и Маунт Ада (Австралия, Пилбара, Варравуна, 3,47 млрд л.н.). Кем были организмы, чьи отпечатки палеонтологи находят в камнях – точно неизвестно. Вроде бы они похожи на бактерий, но для столь малых и примитивных существ внешнее сходство ненадежно – все они выглядят как цепочки из шариков. Часто предполагают, что это – отпечатки цианобактерий, но с большей вероятностью они могли быть анаэробными аноксигенными фотосинтетиками типа современных зеленых нитчатых бактерий Chloroflexus aurantiacus и зеленых серных бактерий Chlorobium limicola. Эти бактерии не затрачивают и не выделяют кислород, а именно это было важно в архее, когда свободного кислорода не было ни в воде, ни в воздухе, а у самих бактерий, соответственно, не существовало защиты от него. Кстати, такие бактерии снабжены не обычным хлорофиллом, а бактериохлорофиллом. Он может улавливать не только солнечный свет, но и гораздо более тусклое длинноволновое излучение гидротермальных источников, чем занимается, например, серобактерия GSB1 из темных глубин около Коста-Рики.

Впрочем, и цианобактерии возникли в том же архее, только, видимо, чуть попозже, ближе к 3 млрд л.н. или даже еще ближе к современности – 2,7 – 2,5 млрд л. н. В любом случае древнейшие химические следы хлорофилла из серии Фиг Три в горах Барбертон в Южной Африке имеют возраст 3,2 млрд л. н. С этого момента началась новая жизнь. Первые цианобактерии, судя по различию генов и ферментов в разных современных классах, были анаэробами и не умели фотосинтезировать, но все же научились – да еще как! Самое важное, что цианобактерии изобрели оксигенный фотосинтез, то есть такой, при котором выделяется кислород. В последующем это стало залогом нашего появления.

Маленькая тонкость

Почему растения зеленые? Одним из первых назначений пигментов в клетках могла быть просто защита от губительного ультрафиолета. Но в последующем энергия поглощаемого света стала использоваться для синтеза углеводов. А свет бывает разный. Синие фотоны (физики возмутятся такой формулировкой, но что поделать – так короче и нагляднее) высокозаряженные, несут много энергии, но хорошего много не бывает, Солнце-то у нас желтое. Так что они вкусные, но их мало. Красные фотоны – низкозаряженные, зато их навалом, как всегда бывает с халтурой; их тоже хорошо использовать. Зеленые же фотоны и не сильно полезные, и не так уж их много, так что их можно не поглощать, а отражать. Отраженный свет попадает нам в глаз – и мы видим зеленое растение.

Важно, что даже самые первые известные живые существа уже жили сообществами. В палеонтологическом виде их находят в виде строматолитов – «слоистых камней». Сейчас строматолиты тоже существуют, они известны, например, у берегов Австралии и в Карибском море. Правда в зависимости от конкретных условий местности бактерии в строматолите могут быть разными, но принципиальная суть у них одна.

Стандартный строматолит выглядит как круглый камень на ножке, стоящий неглубоко в воде и покрытый невнятной слизью. Слизь же состоит из трех слоев. Самый наружный составлен бактериями-фотосинтетиками, которые используют свет для получения энергии, из окружающей воды берут, что им надо для жизни, перерабатывают это и гадят под себя. Во втором слое сидят бактерии, часто тоже фотосинтетики, так как сквозь первый слой какое-то количество света проходит; они используют то, что упало им на «головы», перехимичивают еще разок и получают еще немного энергии, а потом, ясно, гадят дальше. Третий слой самый несчастный, он сидит в темноте, а в том, что достается ему сверху, энергии уже совсем мало. Поэтому на выходе от бактерий третьего слоя получается совсем уж безыдейный осадок, который смешивается со всякой бесполезной грязью, оседающей из воды, и превращается в минеральный слой. После тысяч лет такой карусели получается слоистый булыжник, который, если его распилить, выглядит очень красиво.

В современных строматолитах первый слой обычно аэробный, то есть использует кислород для дыхания. Но бактерии архейских строматолитов не могли быть такими по той простой причине, что кислорода в воде и атмосфере почти не было. Другое дело третий, самый глубокий слой – ему, кроме прочего, должна была доставаться и неслабая доля кислорода, выделявшегося верхними фотосинтетиками в качестве отходов жизнедеятельности. Чтобы жить в таких зверских условиях, для начала надо было научиться защищаться от ужасного кислорода. После же какие-то самые ловкие жители подвала научились этот кислород использовать; правда, произошло это уже в протерозое.

Забавно, что кроме обычных строматолитов в докембрийских отложениях обнаруживаются и другие варианты микробных сообществ. Один из странных вариантов – онколиты, устроенные принципиально как строматолиты, но без прикрепительной ножки, шаровидные, с концентрической слоистостью. Как такое могло получиться – не вполне очевидно. Они не могли быть плавающими, ведь камень тяжелее воды. Обычно пишется, что онколиты свободно перекатывались по дну в прибойной зоне, но это тоже странно: отчего они нигде не застревали, и как бактерии не давились под весом камня и при ударах обо все окружающее? Другое непонятное явление – катаграфии – карбонатные комки изменчивой формы, неслоистые, но с некой внутренней неоднородностью; видимо, это – результат жизнедеятельности колоний бактерий или водорослей, часть же может быть копролитами, хотя, конечно, это не относится к архейским формам.

Как вы там, потомки?

Представить, как выглядели типичные проявления жизни в архее, можно, посмотрев на дно и берега современных термальных источников, например, в камчатской Долине гейзеров или в вайомингском Йеллоустоне – там практически нет эукариот, зато полно бактерий и архей. Некоторые такие прокариотные сообщества очень красивы: желтые, оранжевые, переливающиеся в зависимости от того, какого элемента много в данной конкретной луже – серы, железа или чего-то еще.

Мы не так много знаем о жизни в архее, но это не значит, что жизни тогда было не много. По некоторым оценкам, продуктивность даже раннеархейских экосистем была вполне сопоставима с современными. Предположительно, именно докембрийские бактерии – маленькие, да удаленькие – создали основные запасы нефти и природного газа, которыми мы до сих пор пользуемся как главными источниками энергии. В составе клетки прокариот липидов и липоидов больше, чем в эукариотах, а именно липиды и липоиды – основа нефти. В отсутствие эукариотической конкуренции археям и бактериям жилось вольготно, тем паче, что на свежей, только с пылу с жару, еще не утрамбованной планете многие химические вещества были гораздо доступнее, чем сейчас.

* * *

В архее достоверно появились клеточная жизнь, фотосинтез и способность к симбиозу, которые стали залогом будущей многоклеточности. Понятно, что хорошо бы разделить все эти события по более подробным полочкам, но пока у нас катастрофически не хватает данных. В архее начали формироваться запасы углеводородной энергии, позволяющие нам строить нынешнюю цивилизацию, изучать прошлое и пытаться освоить другие планеты.

* * *

Альтернативы

Клеточная жизнь архея запросто могла застопориться в самом начале. Первые бактерии могли быстро израсходовать запасы абиогенной органики и вымереть, так и не научившись продуцировать новое вещество хемо- и фотосинтезом. Они могли не научиться взаимодействовать и организовываться в строматолиты. «Поздняя тяжелая бомбардировка» могла стереть зачатки жизни и превратить планету в выгоревший полигон. Между 2,94 и 2,909 млрд л. н. произошло как минимум три оледенения, вероятно, были и другие. Каждое из них могло закончиться фатально для неокрепшей еще жизни. Сколько возможностей пропасть! Как мал шанс выжить! Что сказать, наши предки – и, стало быть, мы – были очень везучи.

Протерозой

2,5 – 0,541 миллиарда лет назад: Половина истории жизни


МЕЖДУНАРОДНАЯ ШКАЛА

2,5 млрд л. н. – палеопротерозой сидерий (2,3) – рясий (2,25) – орозирий (1,8) – статерий (1,6) – мезопротерозой калимий (1,4) – эктазий (1,2) – стений (1) – неопротерозой тоний (0,72) – криогений (0,635) – эдиакарий (541)


РОССИЙСКАЯ ШКАЛА

2,5 млрд л. н.: раннепротерозойский эон нижнекарельская эра (2,1) – верхнекарельская эра (1,65) – позднепротерозойский эон рифей нижнерифейская эра (1,35) – среднерифейская эра (1,03) – верхнерифейская эра (0,6) – венд ранний венд – поздний венд



Протерозой – два миллиарда лет, половина истории жизни на планете и при этом – самая скучная половина. Полтора миллиарда лет до него в гадее и архее жизнь только появлялась и представляла собой в лучшем случае бактерий, после него полмиллиарда лет фанерозоя были самым веселым и бурным временем. А вот протерозой подкачал. Смотря на его почти пустые толщи, становится грустно от сознания, что при зарождении жизни на любой планете наиболее вероятная ее участь – именно такова. Склизкие бактериальные пленки, в лучшем случае водоросли и нелепые живые блины. Нет никакой гарантии развития чего-то более приличного, нам невероятно повезло, что под конец этого тоскливого этапа жизнь все-таки раскачалась и чуть погодя дошла до нас, способных осознать масштаб нашей удачливости.

* * *

Граница архея и протерозоя ознаменовалась завершением формирования континентальной коры и подъемом континентов над водами морскими, что по-своему приятно, ведь это гарантирует большее количество отложений, доступных для исследования. Кроме прочего, это привело к распространению наземного вулканизма и изменению состава воды и атмосферы, так как подводные вулканы выбрасывают много сероводорода и железа, а наземные – больше оксидов серы. Раньше легкий сероводород улетучивался в атмосферу, а железо погружалось в воды океана, причем и газ, и железо окислялись, поглощая кислород. Теперь более тяжелые оксиды железа взаимодействовали с водой, превращались в серную кислоту, снова распадались на водород, улетавший в космос, и серный анион, который растворялся в воде и взаимодействовал с болтавшимся там железом, которое в итоге осаждалось в виде пирита (то есть сульфида железа). Кислород высвобождался, да к тому же все время добавлялся фотосинтезирующими цианобактериями. Какое-то время кислород еще продолжал уходить на окисление всего подряд, но с некоторого момента стал накапливаться.

Одним из важнейших следствий стало формирование озонового слоя. Обычный молекулярный кислород в верхних слоях атмосферы, поглощая ультрафиолет, превращался в озон, а ультрафиолет, закономерно, не доходил до земли. Замечательно, что кислород поглощает самую злую часть спектра, наиболее опасную для нуклеиновых кислот. Благодаря этому жизнь смогла подняться еще ближе к поверхности воды и почвы. Правда, существенно все это сказалось уже к самому концу протерозоя.

В начале же кислород только накапливался. Процесс этот был, конечно, не мгновенный, но и не очень-то плавный. Довольно резко он ускорился между 2,4 и 2,1 млрд л. н. Показательно, что этот же интервал – 2,4 – 2,2 млрд л. н. – время гуронского оледенения, а само оледенение было частично вызвано ровно теми же процессами. Накапливавшийся из-за совокупной деятельности вулканов и фотосинтетиков кислород окислял метан, который до этого был главным парниковым газом, поднимавшим температуру планеты. Да и Солнце в то время еще не раскочегарилось по полной и светило на четверть, а то и на треть слабее нынешнего. Плюс к этому части прежнего Ура между 2,7 – 2,6 и 2,5 – 2,4 млрд л. н. собрались в единый суперконтинент Моногею (известную также как Протогея и Кенорленд), перегородивший морские течения и нарушивший смешение воздушных масс на планете. Все это, вместе взятое, и привело к мощнейшему оледенению, которое подкосило бытие бактерий-метаногенов, что закономерно только усилило холода, так что средняя температура на планете стала примерно -40°C. Конечно, так это выглядит при изображении широкими мазками, в реальности гуронское оледенение было не единым, профессиональные геологи говорят во множественном числе – «гуронские оледенения», но пока мы не настолько подробно знаем историю, чтобы точно выделить определенные моменты и даже точно посчитать их, главных ледниковых периодов насчитывается не то три, не то четыре. Можно также упомянуть, что в позднеархейском гляциогоризонте группы Мозоан Южной Африки видно четыре пласта ледниковых отложений, а в раннепротерозойском грикватаунском ледниковом горизонте – свите Диамиктиты Макганиене – шесть.

2,3 – 2,1 млрд л. н. Моногея распалась на множество кусков, наступило потепление; чуть позже – 2,08 – 2,06 млрд л. н. – содержание кислорода в атмосфере немного спало. География продолжала меняться: 1,8 – 1,5 млрд л. н. из осколков Моногеи (среди которых самым большим была Атлантика – слипшиеся Южная Америка и Африка), слепился новый суперконтинент – Мегагея (Нуна, Колумбия, или Хадсонленд), 1,4 млрд л. н. она тоже развалилась, а 1,1 – 1,0 млрд л. н. собралась Мезогея (Родиния), которая 800 – 750 млн л. н. раскололась на Лавразию на севере и Гондвану на юге, которые 650 млн л. н. продолжили дробиться дальше. Ясно, что за такие немеряные отрезки времени чего только не происходило, проблема в том, что знаний у нас очень мало.

К середине раннего протерозоя – около 2 млрд л. н. средний уровень кислорода, несмотря на колебания, поднялся настолько, что разразилась кислородная катастрофа. Для живших до этого анаэробов кислород был ужасным ядом – и подавляющая часть беззащитных созданий вымерла. Парадокс в том, что фотосинтетики сами уничтожили свою среду обитания, загадили мир кислородом и отравили себя. В этих условиях, как уже упоминалось, на коне оказались бывшие отщепенцы из нижнего слоя строматолитов, которые научились сначала защищаться от кислорода, а потом и использовать его. И это стало их триумфом. Как часто бывает, революция происходила несколькими параллельными путями. Например, сравнение дыхательных ферментов цианобактерий классов Sericytochromatia, Melainabacteria и Oxyphotobacteria (впрочем, иногда их классифицируют совсем иначе) показывает, что они изобрели кислородное дыхание независимо трижды.

Счастливые обладатели кислородного синтеза, или аэробного дыхания, совершили рывок из грязи в князи. При окислении выделяется много энергии: чтобы в этом убедиться, достаточно что-нибудь поджечь и сунуть в огонь палец – вот она, мощь окисления! Вопрос только в том, как обуздать эту бездну энергии. Те, кто первые смогли зарегулировать новый источник силы, получили огромное преимущество: теперь они могли создавать гораздо больше органических веществ за меньший отрезок времени. А это позволило кооперироваться. А это стало залогом появления эукариот, то есть клеток с ядром.

* * *

Ядерные организмы возникли 2,1 – 1,9 млрд л. н. (по самым смелым оценкам даже 2,7 млрд л. н., но это вряд ли). Судя по составу генов современных существ, эукариоты стали своеобразными химерами-матрешками, включившими в свой состав много компонентов. Большая часть ядерных генов и цитоплазма достались нам от анаэробного архейного предка, а митохондрии и (у самых везучих) пластиды – от аэробных бактерий. Обычно упрощенно это преподносится так, что то ли некая архея съела бактерий, но недопереварила, то ли бактерии были внутриклеточными паразитами, а архея заизолировала их в вакуоли. В последующем бывшие цианобактерии, а ныне пластиды стали использоваться как генераторы глюкозы, а альфапротеобактерии – митохондрии – как производители АТФ. При этом те и другие сохранили кольцевую ДНК и собственные бактериальные рибосомы, а у глаукофитовых водорослей пластиды-цианеллы имеют даже муреиновую клеточную стенку, типичную для бактерий.

Сейчас митохондрии нужны нам как органеллы, которые умеют с использованием кислорода производить АТФ, то есть батарейку – отличный переносчик энергии. Изначально же, скорее всего, они просто поглощали ужасный кислород и тем защищали архейную клетку от отравления. Потом оказалось, что при утилизации яда выделяется немало энергии, которую можно использовать на мирные цели. Митохондрии у всех эукариот одинаковые, так что были включены в наш состав лишь однажды.

Как вы там, потомки?

С пластидами сложнее – они были обретены как минимум дважды: некими зелеными водорослями и отдельно амебоидом Paulinella. Далее пластиды бурно эволюционировали, так что сейчас существует великое их разнообразие, из которого каждому школьнику близки, конечно, хлоропласты. Довольно быстро возникли красные водоросли, а после пластиды передавались от одних эукариот другим путем вторичного и третичного эндосимбиоза, когда новые халявщики поглощали уже эукариотические красные и зеленые водоросли или даже тех, кто поглотил их до этого, образуя хитрые матрешки, из которых самой замечательной является, конечно, динофлагеллята Durinskia, включающая в себя как минимум пять организмов. Кроме того, сейчас известна масса существ, в которых цианобактерии и водоросли живут как симбионты, но еще не достигли такой степени консолидации с хозяином, чтобы называть их пластидами: лишайники; золотые медузы Mastigias papua и лунные медузы Aurelia с водорослями-зооксантеллами Symbiodinium; черви-турбеллярии Convoluta с зоохлореллами; слизни Elysia chlorotica, поедающие водоросли Vaucheria litorea и оставляющие себе их хлоропласты (причем геном слизня кодирует некоторые белки, необходимые хлоропластам для фотосинтеза); моллюски тридакны с зооксантеллами и многие прочие. Некоторые пластиды, напротив, эволюционировали намного дальше: у динофлагелляты Kryptoperidinium они превратились в светочувствительный глазок, у споровиков Toxoplasma gondii и Plasmodium falciparum стали апикопластами – синтезаторами жирных кислот.

На самом деле, все было еще чуточку хитрее. В нашем ядерном геноме есть гены, кодирующие бактериальные белки, но они не митохондриальные и не пластидные. Похоже, наш предок был горазд хватать всех подряд и приспосабливать к своим надобностям. Была даже версия, что жгутики – это тоже наполовину переваренные бактерии, от которых сохранился лишь «хвостик»; впрочем, при дальнейшем изучении бактериальный и эукариотический жгутики оказались слишком различными; а жаль, гипотеза была красивая.

Смешение происходило в обе стороны: митохондрии и пластиды сдали часть своих генов в ядро на хранение, так как под защитой двойной ядерной мембраны безопаснее и надежнее. При этом часть митохондриальных генов кодируют белки цитоплазмы. Впрочем, смешение архей и бактерий так и не завершилось до сих пор: при повреждениях митохондрий наша иммунная система реагирует на них, как на болезнетворных бактерий, поэтому раны могут воспаляться даже без всякого внешнего заражения.

Собственно, именно проблемы и противоречия тесного взаимодействия архейного и бактериального геномов вызвали возникновение клеточного ядра. Появление ядерной мембраны – отдельная загадка. Самая простая гипотеза: архея, поглощавшая митохондрий, должна была защищаться от них, для чего впячивала со своей внешней мембраны карманы (они, собственно, ныне и являются наружной мембраной митохондрий), а часть таких окружила собственную ДНК археи, став ядром. Есть и обратная экзомембранная версия: не ядро было включено внутрь клетки, а наоборот, исходная двумембранная клетка-ядро выпячивала внешний слой в виде ложноножек для фагоцитоза будущих митохондрий, после чего эти ложноножки сливались и стали нынешней внешней клеточной мембраной.

Существуют и более экзотические идеи. Возможно, сама архея была таким же гостем в клетке, как и митохондрии, и пластиды. Вопрос тогда в том, из кого же получилась собственно клетка? По одной из версий, она возникла из некой бактерии, подобной современным миксобактериям Myxococcales – крупным, с максимальным для бактерий геномом (у Sorangium cellulosum), склонным формировать плодовые тела, способным ползать как поодиночке, так и в составе подвижных колоний, выделяющих общественные экзоферменты (у Myxococcus xanthus). Идея заманчивая, ведь отсюда видится прямой выход на многоклеточность. Проблема в том, что рибосомы и белки нашей цитоплазмы в основе своей все же архейные. Та же сложность с гипотезой, согласно которой наша клетка – это усовершенствованный планктомицет Planctomycetes (типа современного Gemmata obscuriglobus), ведь эти бактерии обладают внутренними мембранами, в том числе двойной замкнутой, окружающей область с ДНК – нуклеоид. А чем тогда эта структура принципиально отличается от ядра? Более того, с помощью мембран планктомицеты могут даже захватывать из окружающей среды довольно крупные молекулы, что опять же роднит их с эукариотами; есть и другие специфические сходства. Впрочем, способность впячивать мембраны внутрь себя и даже обособлять их, вероятно, возникала неоднократно; современные Poribacteria тоже имеют внутренние мембранные пузырьки.

Оригинальна вирусная гипотеза происхождения ядра: по ней наш архейный предок был заражен ДНК-содержащим вирусом типа поксвируса Poxviridae (у которых ДНК окружена двухслойной липопротеидной оболочкой и к которым, кстати, относится оспа) или же бактериальная микоплазма Mollicutes съела подобного гигантского вируса.

Как вы там, потомки?

Если предком цитоплазмы была все же архея – как она выглядела, чем жила? В гидротермальных источниках Атлантического океана найдена современная архея Lokiarchaeum, выделенная в особый тип Lokiarchaeota и по своим ключевым признакам наиболее годная на роль нашего предка. Забавно, что в геноме локиархеума 26 % генов типичны для архей, а 29 % – для бактерий, то есть горизонтальным переносом он нахватался чужого больше, чем оставил своего. При этом локиархеум все же продолжает быть археей, так как в самоопределении важно не количество, а качество: ключевые параметры задаются именно архейными генами, а не бактериальными. Важнее, что 3,3 % генов близки к эукариотным; особенно существенно, что к ним относятся гены цитоскелета, изгиба мембраны для образования везикул и актин для фагоцитоза. Рибосомы локиархеума тоже максимально похожи на эукариотические. К сожалению, локиархеум пока известен только из геномного анализа, а строение его клеток остается неведомым. Было бы крайне любопытно посмотреть, умеет ли он вытягивать ложноножки, делать пузырьки внутри себя и есть ли у него подобие ядра? Думается, скоро мы это узнаем.

Как бы ни возникли эукариоты, у них были проблемы с взаимодействием разнородных частей. Это решалось оттачиванием регуляторных генетических комплексов, столь пригодившихся потом и при возникновении многоклеточности.

Как минимум, разнородные составляющие – архейные, бактериальные и, возможно, вирусные – должны были быть разгорожены мембранами-пузырьками. Способность формировать вакуоли стала важнейшим приобретением. У прокариот ДНК болтается прямо в цитоплазме, так что многие реакции, способные поломать генетическую информацию, запрещены. Из-за того же ДНК почти всегда кольцевая – так злым ферментам труднее ухватить кончик молекулы и начать разрушать ее, ведь у кольца кончика нет; но из-за кольцевой формы ДНК не может быть длинной, а потому не может кодировать много процессов (другое следствие: у прокариот намного лучше отработаны системы репарации, то есть починки ДНК, ведь она чаще повреждается). По той же причине единого пространства цитоплазмы невозможны и взаимопротиворечащие реакции. У эукариот же появилась возможность изолировать ДНК от опасных биохимических процессов цитоплазмы, а те – друг от друга. Теперь ДНК в спокойствии и под защитой двойной ядерной мембраны смогла стать большой, раскольцеваться, стать линейной, разделиться на множество хромосом, в которых можно закодировать много информации о разных процессах, в том числе взаимоисключающих, но происходящих одновременно и независимо в самостоятельных пузырьках-отсеках. Появилась возможность проводить такие реакции, которые доселе были запрещены, активность метаболизма выросла, возможности жизни несказанно расширились.

Для начала, клетки стали намного – на один-два порядка – больше. Теперь некоторые из них стало можно разглядеть даже невооруженным взглядом. Неспроста в отложениях Франсвиля в Габоне с древностью 2,1 млрд л. н. обнаружены отпечатки вполне макроскопических организмов длиной в десяток сантиметров. Непонятно, кем бы они могли быть, но предполагается, что это были либо многоклеточные, либо синцитиальные (то есть слившиеся из многих клеток) аэробные существа типа амебоидов, которые ползали вверх-вниз по мелководному осадку в поисках пищи. У нас нет строгих доказательств, что габонские существа были эукариотами, но для прокариот они чересчур уж гигантские. Конечно, и среди бактерий есть исполины, как Thiomargarita namibiensis, достигающая от 0,1 – 0,3 до 0,75 мм, но даже этому супер исключению далеко до франсвильских «псевдочервяков». Другой пример протерозойских титанов – Grypania spiralis из Мичигана в США с древностью 1,87 млрд л. н. (изначально эти слои тоже были датированы 2,1 млрд л. н., но после ошибку исправили) – сантиметровые зигзаги прекрасно видно на красноватых камнях безо всякого микроскопа. Чисто гипотетически грипании могли быть гигантскими бактериями или их колониями, но все же вероятнее, что это уже эукариотические водоросли.

Парные линейные отпечатки Myxomitodes stirlingensis из формации Стирлинг в Австралии с древностью 2,0 – 1,8 млрд л. н. длиной от нескольких миллиметров до нескольких сантиметров могут быть следами ползания каких-то многоклеточных или синцитиальных тварей, а дискообразные отпечатки очень похожи на эдиакарских «медузоидов» Aspidella и могут быть их предками.

На самой заре своего существования эукариоты разделились на несколько генеральных ветвей. Когда и как это происходило – толком не понятно, но мы точно знаем, что 2 млрд л. н. уже существовали древнейшие грибы: Petsamomyces polymorphus на Кольском полуострове, Huroniospora microreticulata на границе нынешних Канады и США, 1,43 млрд л. н. – Tappania (они же Germinosphaera) на территории северо-западной Канады, 1,01 – 0,89 млрд л. н. – Ourasphaira giraldae тоже в Канаде. Они предстают в виде мохнатых комочков размеров в десятую долю миллиметра (то есть с толстый волос человека). Современным людям грибы обычно представляются сугубо наземными существами, но нет – появились они в морях, где, кстати, и до сих пор живет большинство из них. Просто морские грибы крайне плохо изучены, но это не значит, что их нет.

Как вы там, потомки?

Грибы Fungi были одними из первых эукариот, а потому должны были вступать в бурную конкуренцию с бактериями, которым тогда принадлежал мир. Неспроста грибы сплошь и рядом бывают либо лекарственными, либо ядовитыми. Тут главное помнить, что свойства грибов никак не привязаны к человеку: мукор или мухомор эволюционировали не потому, что как-то влияли на наше самочувствие, они всегда противостояли бактериям. Разница целебных и опасных грибов очень проста: полезные грибы, типа пеницилла Penicillium, гнобят бактерий по тем биохимическим системам, которых нет у нас, а ядовитые, типа бледной поганки Amanita phalloides – по тем, что у бактерий и нас совпадают. Накал страстей усиливается тем, что большинство грибов – редуценты, разлагают органику до неорганики, что трудно и невыгодно, то есть грибы дерутся с гнилостными бактериями за самые бедные энергией ресурсы, а чем дефицитнее выигрыш, тем злее битва. Одновременно, для редуцирования необходимы очень мощные ферменты, так что оружия у грибов хватает. Бактерии разнообразнее, многочисленнее, и они быстрее плодятся, зато грибы – эукариоты, у них есть большое ядро с длинным геномом, в который можно прописать кучу ядреных ферментов; да к тому же большинство снабжены мощной хитиновой клеточной стенкой, так что в извечной битве, длящейся с протерозоя, грибы, хотя и не могут окончательно победить, держатся достойно.

Грибы довольно быстро не только освоили борьбу с бактериями, но и вступили с ними в симбиоз; война – лучший двигатель торговли, это всем известно. Воочию увидеть результат такого взаимодействия многие могут у себя дома, а другие – у более везучих соседей, владельцев «чайного гриба». Этот «чайный гриб» – толстый, белёсый, слоистый склизкий блин, обычно плавающий в пятилитровой банке, куда добрые хозяева подливают использованную чайную заварку и подсыпают сахарок. На выходе получается что-то типа кваса. И неспроста, ведь «гриб» представляет собой сплоченную компанию дрожжей Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii и Zygosaccharomyces bailii, а также уксуснокислых бактерий Zoogloea. Формы и границ «чайный гриб» по определению не имеет, а занимает столько пространства, сколько есть, разрастаясь по поверхности воды. В протерозое подобные слизистые массы занимали все доступные поверхности. В более позднее время они заметно сдали позиции, проиграв конкуренцию растениям и будучи поедаемы животными, но в те счастливые времена, когда не было ни растений, ни животных, вся планета была местообиталищем подобных «грибов».

Первые грибы были одноклеточными, но быстро и весьма автоматически – в силу неподвижности клеток – стали колониальными, а оттуда недалеко и до простейшей многоклеточности. Тонкие нити-гифы грибов еле заметны, но вся грибница-мицелий может достигать огромных размеров. Самый большой организм на планете – «орегонский монстр» – опенок темный Armillaria ostoyae – занимает площадь 880 гектаров и живет уже 2400 лет. На земле мы можем найти в лучшем случае плотные кучки маленьких грибочков, а с самолета видно гигантское пятно более светлой листвы деревьев, на которых паразитирует грибное чудовище.

Таппания и другие похожие микроокаменелости суммарно называются акритархами. Среди этой заведомо сборной группы планктона наверняка были и водоросли, и какие-то иные существа. Между прочим, в пользу эукариотического статуса акритарх говорит как их большой размер, так и шиповатость наружных оболочек. У бактерий поверхность всегда гладкая, максимум могут быть жгутики, а вот эукариоты со своим мощным метаболизмом могут направить часть энергии на создание всяких украшений.

Маленькая тонкость

Эти же два признака – величина и скульптурность – могут быть использованы как маркеры существования в тогдашних морях каких-то других живых существ. Когда есть кто-то беззащитный и притом съедобный, обязательно найдется и кто-то хищный. Избежать напасти можно разными способами: стать незаметным или быстрым, ядовитым или малопитательным, бронированным или опасным, изменить суточный ритм или величину. Судя по тому, что некоторые раннепротерозойские акритархи уже были шипастыми, кто-то их уже ел. Правда рельеф мог возникнуть и для других целей, например, лучшего удержания в парящем состоянии в воде или сцепляния в компании. Но до момента 1,35 млрд л. н. акритархи были маленькими – так легче болтаться в толще воды и не тонуть. А вот после они начинают расти, достигая рекордных значений аж в 2 – 3 мм между 1 и 0,7 млрд л. н.; в это же время – в тонийском периоде, или верхнерифейской эре – акритархи пережили первый значительный расцвет.

Крупнокалиберность – почти предел для одноклеточных существ – возникла явно неспроста. А ведь один из хороших способов спастись от хищника – увеличиться в размерах, чтоб у супостата пасть так широко не смогла открыться. Одновременно некоторые акритархи опять становятся шипастыми. Очевидно, было от кого защищаться, существовали и какие-то другие твари, нападавшие на акритарх. К сожалению, хищники не имели мало-мальски твердых оболочек, а потому не оставили никаких палеонтологических следов. Можно лишь догадываться, что это были какие-то «амебоиды».

Забегая вперед, можно упомянуть, что заметно позже, в венде, акритархи резко уменьшились, зато приобрели еще более мощные шипы: гонка защиты и вооружения продолжалась. Очевидно, возникли уже очень большие хищники, и тогда стало полезно быть маленьким, так как крупному плотоядному невыгодно гоняться за мелочью – при этом он потратит больше энергии, чем по лучит, съев малявку.

* * *

Еще одно следствие сочетания аэробности, эукариотичности, конкуренции и пресса хищников – появление многоклеточности. Ключевым тут стало, как ни мрачно это звучит, изобретение смерти. Дело в том, что одноклеточные организмы технически вечны, ведь нельзя же считать деление надвое за гибель (кстати, из этого вырастает проблема индивида и эволюции индивида: любая современная амеба или эвглена – это тот же конкретный индивид, что жил миллиарды лет назад, причем амеба за эти бездны поколений накопила огромные отличия от эвглены). В принципе, то же происходит с колониальными организмами: любая клетка в колонии только тусуется рядом с остальными, но делится сама по себе. А вся суть многоклеточного организма в том, что только некоторые избранные клетки получают шанс на бессмертие, а остальные имеют сугубо вспомогательную роль и обречены на исчезновение. Но любая клетка по исходной своей сути стремится безгранично делиться и жить вечно, убедить ее в обратном крайне сложно, особенно учитывая, что геном-то во всех клетках многоклеточного существа одинаков, ведь все они – производное одной исходной зиготы (а когда клетка многоклеточного организма из-за мутации сходит с ума и все-таки вдруг решает, что она бессмертна, она становится раковой, причем тем более опасной, что весь геном-то и базовая биохимия у нее родные, так что иммунная система на нее не реагирует). Для того чтобы в одних клетках работали одни группы генов, а в других они молчали, а включались иные, нужна очень хитрая регуляция и как минимум огромный размер генома. А для создания огромной, длинной-предлинной ДНК, в которой были бы прописаны программы для сотен вариантов клеток, нужно огромное количество энергии. Именно поэтому в анаэробные времена о многоклеточности нельзя было даже мечтать, да и аэробные бактерии, хотя и сделали несколько попыток перехода на многоклеточность, так и не сдюжили. Колониальность бактерии еще смогли освоить, но на большее у них не хватило ни энергии, ни размера генома.

Как вы там, потомки?

Внешний вид и свойства предков многоклеточных мы можем в общем виде представить, изучая современных потомков. В нашем сложном организме есть клетки с ложноножками (например, лимфоциты), есть со жгутиками (волосковые клетки внутреннего уха и сперматозоиды), есть с ресничками (этих и вовсе много, например, в водопроводе мозга, верхнем носовом ходе, трахее и маточной трубе). А ведь геном в каждой клетке один и тот же, значит, предок обладал всеми этими приспособлениями одновременно. Из современных существ подобные универсалы есть в типе Percolozoa и классе Heterolobosea – Naegleria fowleri, а также типе Amoebozoa и классе Archamoebea – Mastigamoeba aspera. Правда, даже у них не бывает одновременно всех трех типов отростков. Видимо, предок не был увешан и ресничками, и жгутиками, и псевдоподиями зараз, а отращивал их в разные периоды жизни.

Среди современных существ самым примитивным многоклеточным является Trichoplax adhaerens, выделяемый в собственный тип пластинчатых Placozoa. Это абсолютно бесформенное существо выглядит как пленочка – обрывок водоросли. Первый образец был найден на стенке морского аквариума, и для меня останется вечной загадкой – как вообще на такую фигню можно было обратить внимание? Но на то и крутые зоологи – а первооткрыватель трихоплакса Франц Шульце был не просто крутым зоологом, а немецким профессором образца XIX века, – чтобы среди всякого мусора разглядеть уникальных существ и заинтересоваться их строением. У трихоплакса нет ни органов, ни внятных тканей, но есть несколько типов клеток разного назначения, причем не все из них могут размножаться половым путем. Хотя трихоплакс может делиться почкованием (а иногда разные его половины решают ползти в разные стороны, отчего он рвется пополам), на регенерацию есть определенные ограничения: не каждый оторванный кусочек восстановится как полноценный организм. А это – отличный показатель многоклеточности!

Долгое время трихоплаксы были известны только по образцам из аквариумов, где оказывались случайно, но в последнее время хитрые зоологи наловчились ловить их в морях. Выяснилось, что они не такие уж редкие и однообразные, просто маловыразительные и неприметные. Уже описан новый род и вид Hoilungia hongkongensis, и нет сомнений, что родня будет прибывать и дал ее.

Примитивность трихоплакса может быть первичной или же вторичной – как результат упрощения. Но в любом случае примерно так должны были выглядеть наши про терозойские предки.

Первые предположительно многоклеточные макроорганизмы обнаруживаются в Китае в формации Чанчэн 1,8 – 1,65 млрд л. н. – безымянные нитчатые или даже пластинчатые водоросли, впрочем, сомнительные. В США 1,5 млрд л. н. и в Австралии 1,4 млрд л. н. (здесь и далее речь о физической географии) Horodyskia выглядели как извилистые линии загадочных шариков или пузырьков, возможно, связанных между собой общей подземной нитью. В России на Тиманском кряже 1 млрд л. н. Parmia была похожа не то на губку, не то на голотурию и притом ее тело было явно сегментировано. В индийских отложениях с датировкой от 1090 до 740 млн л. н. Tawuia dalensis выглядела как замкнутая овальная капсула, а Chuaria circularis – как идеальный круг. Там же и в Северном Китае 840 – 740 млн л. н. Protoarenicola baiguashanensis, Pararenicola huaiyuanensis, P. fuzhouensis и Sinosabellidites huainanensis вроде бы имели отверстие на конце очень вытянутого тела (а может, на некоторых отпечатках оно просто обломано), внутреннюю полость и тем очень похожи на губок или даже кишечнополостных. Кем были эти создания – непонятно. Водоросли? Колонии грибов? Черви? Размытые отпечатки не дают четкого ответа. Возможно, мы видим только некоторые части организмов, тогда как другие могли быть скрыты илом или просто не сохраниться.

Забайкальские Udokania выглядят как полые ветвящиеся кальцитовые трубки с септами внутри; есть мнение, что это – домики древнейших стрекающих кишечнополостных. А между прочим, древнейшие удокании жили уже в раннем протерозое и успешно просуществовали до венда.

Все же относительно некоторых существ у нас уверенности больше. Например, Bangiomorpha pubescens из Канады с датировкой 1,2 млрд л. н. наверняка была древнейшей известной красной водорослью нитчатого типа, в которой клетки следовали друг за другом по цепочке. Предположительно, они были родственны современным бангиевым водорослям Bangiophyceae или, по крайней мере, очень на них похожи. Попозже, очевидно, появились и другие варианты организации таллома – пластинчатые, корковые и кожистые. Планета покрылась водорослевыми лугами и зацвела на новом уровне. Любопытно, кстати, что эти эукариотические сообщества всегда обнаруживаются строго отдельно от прокариотных – строматолитов и прочих подобных.


Bangiomorpha pubescens. Красная водоросль


Jacutianema solubila с датировкой от 800 до 750 млн л. н., предстающая в виде цилиндрических пузырьков, очень похожих на современных вошерий Vaucheriales, вполне может быть желто-зеленой водорослью Xanthophyceae. Попозже, около 750 млн л. н. возникают, видимо, и зеленые водоросли Protocladus lingua.

Как вы там, потомки?

Красные водоросли замечательны тем, что, в отличие от прочих растений, имеют насыщенный красный цвет и растут на большой глубине. У красных водорослей есть особый вариант хлорофилла, не встречающийся у других растений, а также есть несколько версий ксантофилла, фикоэритрин и фикоцианин – красный и синий пигменты, известные также у цианобактерий. Красные фотоны низкоэнергетичны и плохо проникают на большую глубину, так что поглощать их не имеет смысла. Остается использовать синие фотоны и зеленые. В итоге, красные водоросли на глубине не красные, а бесцветные; когда же мы достаем их на поверхность, где есть красные фотоны, то водоросли вдруг приобретают яркий цвет. Между прочим, эта фишка широко используется глубоководными животными, например, кишечнополостными, для создания невидимости: если быть ярко-красным на большой глубине, где нет красных фотонов, то ничего не отражается, весь свет поглощается, и зверек становится совершенно невидим – пока мы не вытягиваем его за тентакли на поверхность, где он расцветает багрянцем. Протерозойские красные водоросли могли расти и на мелководье, но в мутных водах условия не особо отличаются от глубоководных, так что красный цвет был тут весьма кстати.

Бангиевые – самые примитивные красные водоросли, среди них встречаются даже одноклеточные формы, а на разных представителях можно наглядно видеть переходы к нитчатой колониальности и многоклеточности в виде широких плоских талломов, в крайних вариантах развивающих даже специальную прикрепительную подошву из множества слившихся ризоидов.

* * *

Еще одно следствие эукариотичности – в большом геноме вероятнее большие нарушения, мутации никто не отменял. При этом клетке с двойной ядерной мембраной уже не так легко хватать чужие гены горизонтальным переносом, а для усложнившейся системы с хитрым биохимическим балансом это и не всегда полезно. Отсюда прямо вырастает необходимость отладки системы рекомбинации генов, то есть их тасования в поисках новых и лучших комбинаций. А это – залог полового размножения. Как обычно, системы комбинаторики возникали неоднократно и параллельно, что мы видим на примере современных живых существ, а у древних наверняка существовали и какие-то другие, теперь исчезнувшие. Впрочем, эта тема палеонтологически совсем не освещена.

Главное в половом размножении то, что потомство получает два различающихся набора генов, которые еще к тому же при образовании половых клеток перемешиваются – рекомбинируют. Два набора генов дают некоторую гарантию: если с одним что-то не так, то на втором можно выехать. Рекомбинация же с помощью кроссинговера (тут многим читателям придется вспомнить школьный учебник или посмотреть в словаре – эта книга о палеонтологии, все умные слова в ней объяснять невозможно) гораздо лучший способ получения новых генетических вариантов, чем мутагенез. Мутации – это обычно некие нарушения, в лучшем случае они нейтральны, но значимые мутации обычно вредны. Лишь изредка организмам везет, и в новых условиях среды мутация оказывается полезной. Другое дело – рекомбинация: если уж родители дожили до полового размножения, наверняка с их генами все более-менее в порядке, а смешение хорошего и хорошего тоже, наверняка даст что-то неплохое (жаль, в кулинарии это правило не всегда работает!).

Маленькая тонкость

Вариантов половых клеток и полового размножения хватает.

Изогамия была типична для первых существ, которые, очевидно, не делились по разным полам; такой вариант до сих пор характерен для многих водорослей.

Гетерогамия, или анизогамия – более продвинутый вариант, когда гаметы похожи по строению (и обычно имеют жгутики), но отличаются по размеру; эта версия существует у бурых и некоторых зеленых водорослей.

Оогамия – вариант, когда гаметы отличаются и по строению, и по размеру; в этом случае мелкие, оснащенные жгутиками, а потому подвижные гаметы считаются мужскими и зовутся сперматозоидами (если жгутик исчезает, то – спермиями), а большие, без жгутиков и неподвижные – женскими яйцеклетками.

Возможны и более редкостные типы перемешивания генетической информации.

Соматогамия – слияние двух вегетативных клеток гаплоидного мицелия – встречается у базидиальных грибов.

Хологамия – слияние целых одноклеточных организмов – у одноклеточных зеленых водорослей и низших грибов.

Конъюгация – временное слияние с обменом участками хромосом – у инф узорий.

В большинстве случаев возникали два пола – условные мужской и женский. Мужской выполняет функцию распространения, женский – запаса питательных веществ для первых стадий роста потомства. В принципе, этого более чем достаточно, это экономно и энергетически выгодно. Тем интереснее, что у грибов бывает много и даже очень много полов. Гриб щелелистник Schizophyllum commune – рекордсмен: у него 23 328 (по другим подсчетам даже до 28 000) полов. То-то хитрые романы могли бы писать грибы, если бы могли писать хитрые романы!

Пол и половое размножение, таким образом, возникали неоднократно и параллельно, так как это резко увеличивало приспосабливаемость и выживаемость потомства, особенно в меняющихся условиях среды. А среда менялась.

* * *

Климат позднего протерозоя портился. После почти полутора миллиардов лет тепла началась африканская гляциоэра – грандиозный период похолодания, суммарно продолжавшийся с 760 до 533 млн л. н. Её первым предвестником стал гляциопериод кайгас – 760 – 740 млн л. н. (раньше он назывался конголезским оледенением и датировался 900-850 млн.л.н.), сковавший как минимум Южную Америку, Центральную и Южную Африку. Дальше было хуже…

Криогений

720-635 миллионов лет назад: Земля-снежок



Криогений – период, название которого говорит само за себя (он совпадает со второй половиной верхнерифейской эры по российской шкале). Лапландское, или варангерское оледенение было самым мощным за всю историю планеты, следы его обнаруживаются от Австралии и Африки до Китая, Сибири и Северной Америки. В это время температуры упали катастрофически, на экваторе стояли такие же морозы, как в нынешней Антарктиде – от -23 до -43°C. Планета вплотную приблизилась к критическому состоянию «Земли-снежка», когда заледеневшая вода отражала почти весь солнечный свет, отчего температура понижалась, отчего замерзало еще больше воды, отчего альбедо – отражение – только росло, так что шансы на размораживание со временем только падали. Не исключено, что какие-то планеты во Вселенной, потенциально пригодные для жизни, попадаются в снежную ловушку и так и не выходят из подобного состояния.

Оледенение было не единым, а разделяется как минимум на три отдельных этапа: рэпитенский гляциопериод – 723 – 709 млн л. н., стертовский – 667 – 658 млн л. н., марино – около 636 – 635 млн л. н. (понятно, все эти даты довольно условны и периодически пересматриваются). Внутри каждого гляциопериода выделяются гляциоэпохи, каждая из которых содержит отдельные ледниковые события.

Лапландское оледенение (как, кстати, и предыдущие, и последующие) в немалой степени было вызвано живыми организмами. Фотосинтетики потребляли углекислый газ, превращали его в органические вещества и в немалых количествах откладывали в осадок. Неспроста еще в раннем протерозое сформировались огромные залежи графита, например, в Приазовье, на юге Гренландии, на Кольском полуострове и в Карелии. Тогда же продолжали образовываться исключительно богатые залежи нефти и горючих сланцев. К концу протерозоя такое массивное изымание углерода из атмосферы не могло не сказаться. Парниковый эффект снизился – оледенение было неизбежно. Не способствовало потеплению и уменьшение вулканизма, а стало быть – ослабление эндогенной дегазации. Да и вообще планета остывала, тектонические движения были уже не те, приливные деформации подкорковых оболочек сбавили обороты, приток радиоактивного тепла тоже снизился, так как за предыдущие миллиарды лет многие элементы успели распасться. Даже астероиды на планету сыпались реже, так как беспорядочного космического мусора в Солнечной системе поубавилось – что-то уже успело попадать, что-то притянулось планетами-гигантами и сконцентрировалось в астероидных поясах.

Нам повезло. Во-первых, жизнь окончательно все-таки не замерзла. В глубинах океана, около геотермальных источников, в подледных озерах, на вершинах гор и узкой полосе открытой воды на экваторе продолжали расти и копошиться археи, бактерии, водоросли, грибы и какие-то неведомые животные. Надо думать, каждое оледенение вызывало вымирание части видов, а стало быть, высвобождение экологических ниш. Как это всегда бывает, жесткие условия вызывали усиление отбора и ускорение эволюции с закономерным всплеском видообразования у тех, кто вымирать не хотел. Свято место пусто не бывает и нет худа без добра – диалектику никто не отменял.

Более того, в холодной воде кислород растворяется лучше, чем в теплой (неспроста все китобои гонялись за китами не в тропиках, а в Арктике и Антарктике, где много фитопланктона, а стало быть – и зоопланктона, а стало быть – и китов), так что там, где вода не замерзала или хотя бы иногда оттаивала, плотность жизни была очень большой.

Другое следствие холода – увеличение солености воды, ведь пресная замерзала, вытесняя соли в оставшуюся незаледеневшую. А в более плотной воде проще плавать. Кстати, это же помогало вырасти гигантским акритархам, помянутым выше. Легче жилось и многоклеточным животным.

Неспроста именно в это время появляются первые более-менее достоверные следы губок. Правда, остатки самих губок пока не найдены, но в Омане в отложениях с древностью 635 – 713 или даже до 751 млн л. н. выявлены следы их метаболизма в виде 24-изопропилхолестана – вещества, специфического для обыкновенных губок Demospongiae. Показательно, кстати, что губки эти жили на мелководье, а в глубоководных отложениях признаков их присутствия нет – там покамест царили безкислородные – анаэробные – условия. Но губки и, возможно, другие животные делали свое дело – фильтровали воду от взвешенной в ней органики, чистили и делали прозрачной. Больше света попадало на большую глубину, зона кислородной жизни все больше расширялась.

Эдиакарий

635 – 541 миллион лет назад:

Время чудес



Первым делом, стоит прояснить терминологию конца протерозоя. Иногда он называется эдиакарским периодом, иногда – вендским. Эти два слова так часто используются вместе, что многим представляются синонимами, но это не совсем так. Эдиакарий международной шкалы начался 635 млн л. н., а венд российской – 600 млн л. н.; 35 миллионов лет разницы, при всей спорности и подвижности датировок докембрия, весьма немалый срок (в схемах разных лет цифры могут еще значительно гулять). Дело в принципах выделения: автор понятия «венд» Б.С. Соколов в 1950 – 1952 и 1964 гг. геологически строго определил его четкие границы, обозначив важнейшими признаками лапландское оледенение и следы характерных мягкотелых организмов. Впрочем, не все были готовы принять докембрийские времена: первоначально венд был признан лишь как начало кембрия и назывался валдайским комплексом; в 1975 г. венд был узаконен в стандартной глобальной шкале, а в 1990 – 1991 гг. – в международной шкале. В последующем представления о докембрийских оледенениях бурно развивались, добавились новые характеристики, и период стал расти, по пути в 2004 г. поменяв название в международной шкале (зарубежным исследователям бывает трудно принять приоритет российских исследователей, даже когда он очевиден, тем более когда для названия периода используется название славянского племени вендов). Таким образом, сейчас венд фактически является вторым отделом эдиакария, хотя формально это не отражено ни в международной, ни в российской геохронологических шкалах. Впрочем, иногда предлагается, прямо наоборот, эдиакарий считать частью венда, что не добавляет согласия и ясности. В довершение, существует понятие «синийского периода», выделенного А. Грэбо по китайским разрезам раньше всех – еще в 1922 г., а потому имеющего приоритет, но и огромный минус – отсутствие четких границ.

Как бы ни называть конец докембрия и как бы ни очерчивать его границы, это было архиважное время. Материки в очередной раз собрались в суперконтинент Паннотия; в завершение африканской гляциоэры друг за другом грянули два ледниковых периода: гляциопериод гаскье около 582 млн л. н. и – на самой границе протерозоя и кембрия – байконурское оледенение 547 – 533 млн л. н. На протяжении эдиакария содержание кислорода в атмосфере и океане опять начало бурно расти, это называется вторым кислородным скачком. Существенно, что в разных слоях океана установились почти современные проценты кислорода, аммиака и железа – по этим параметрам венд-эдиакарий больше похож на фанерозой, а не на остальной протерозой. Особенно важно, что кислородом насытились не только поверхностные слои, как было до этого, но и большие глубины. Что было причиной, а что следствием – вопрос, но одновременно в биосфере наконец-то начинают преобладать эукариоты.

В венде широко распространяются нормальные ленточные водоросли Vendotaenia antiqua и Kanilovia insolita, обладавшие полноценным многоклеточным талломом. Есть предположение, что каниловии уже начали осваивать сушу, по крайней мере на их талломах найдены ряды странных катушек Cochleatina canilovica, которые, возможно, использовались для разбрасывания спор в воздухе. Правда пока вопросов тут больше, чем ответов (спор никто не нашел, некоторые «виды» катушек не связаны с водорослями, на талломах нет следов прикрепления катушек), так что утверждать что-то невозможно.

Эдиакарская фауна – великая загадка. В настоящее время ее представители найдены в самых разных местах – от Австралии (где находятся Эдиакарские горы, давшие название фауне и периоду), Аргентины и Намибии, Испании и Англии до Белого моря и Урала, Забайкалья и Ньюфаундленда. Казалось бы, находок огромное количество, про них написаны сотни статей и книг, все уже должно быть известно. Ан нет. До сих пор суть эдиакарской фауны не раскрыта.

Эдиакарские существа – вендобионты – имеют несколько странностей.

Во-первых, необычные формы симметрии. При скользящей симметрии есть правая и левая части тела и вроде бы то ли верх-низ, то ли перед-зад, тело явно сегментировано, но сегменты смещены в шахматном порядке. Самые известные существа такого рода Charnia, Spriggina, Yorgia и Dickinsonia (некоторые считают, что три последних рода – одно и то же, только разной степени вытянутости). Pteridinium, кроме скользящей симметрии, был к тому же и трехлопастным. Обычно каждый следующий сегмент был чуть меньше предыдущего, отчего тело Charnia, например, в итоге становилось похожим на лист, перо или наконечник копья. Другой вариант – спиральная трехлучевая симметрия у «медузоида» Tribrachidium heraldicum – круглого существа с тремя завитушками на «макушке». Впрочем, другие – Ediacaria, Tateana (известная также как Cyclomedusa) и Mawsonites – имеют строго круглую форму и радиальную симметрию, более похожую на вариант современных кишечнополостных. «Чешуйки», расходящиеся не то кругами, не то спиралью по поверхности Mawsonites spriggi, наводили многих на мысли об иглокожих. Некоторые диски могут быть заглубленным в почву основанием «перьев»; лучшим примером являются несколько видов Charniodiscus и Paracharnia, верхняя сорокасантиметровая лопасть которых похожа на чарнию, а низ представляет собой типичного «медузоида».

Во-вторых, эдиакарские твари обладали изометрическим, то есть равномерным ростом: маленькие и большие экземпляры совершенно одинаковы в своих пропорциях и отличаются лишь размером.

В-третьих, у вендобионтов нет следов органов передвижения и самих следов движения. Даже те, что напоминают червей и имеют что-то похожее на голову, как Spriggina floundersi, были, судя по всему, неподвижными существами, а «голова» на самом деле была просто первым сегментом, больше разросшимся. Между прочим, отсутствие роющих животных было одной из причин приличной сохранности отпечатков вендобионтов: никто не копался и не баламутил дно, так что осадок мог спокойно фоссилизироваться. Конечно, всегда найдутся исключения: беломорская Yorgia, судя по следам, вполне умела ползать, а горизонтальные норки в толщах строматолитовых бактериальных пленок все же найдены.

В-четвертых, эдиакарские существа не имеют ртов, кишечников или чего-то похожего на пищеварительную систему. Ни разу не понятно, как бы они могли питаться. Предположения о фото- или хемосинтезе законны, но как их доказать? Кстати, небогато и с органами размножения. У Dickinsonia посреди тела проходила полость с отходящими боковыми каналами, но ее назначение неизвестно. Рядом с некоторыми отпечатками дикинсоний есть пятна того же размера и формы, которые, возможно, являются следами питания. Предполагается, что дикинсонии ели подобно современному трихоплаксу, медленно наползая на еду, выделяя на нее пищеварительные ферменты и всасывая получившуюся кашицу.

В-пятых, на самих вендобионтах нет повреждений – погрызов, покусов, оттяпанных кусков. Создается впечатление, что в фауне не было хищников, рисуется картина идиллического мира пацифистов.

В-шестых, вендобионты не имели никаких твердых частей тела – ни панцирей, ни раковин, ни зубов. Впрочем, раз они никого не кусали и их никто не грыз, им это было не нужно.

Кем были эдиакарские вендобионты? На эту темы выдвинуто огромное количество предположений: колонии бактерий, водорослей или простейших, грибы, лишайники, медузы, черви, вымершие типы, не имеющие родства с современными. Описано огромное число типов вендобионтов, но их достоверность под большим вопросом; в систематике и родстве эдиакарских существ предстоит еще долго разбираться.

В последнее время использование тонких химических методов позволило приоткрыть завесу тайны. Так, в круглых концентрических отпечатках Beltanelliformis (они же Nemiana), собранных кучками, оказался повышен процент гопанов – веществ, в которые преобразуются составляющие бактериальных мембран. Особенно важно, что из рядом расположенных водорослевых пленок выделены стераны – производные мембран водорослей, что подтверждает неслучайность распределения веществ в породе. Таким образом, Beltanelliformis были колониями бактерий, росших на водорослевых пленках типа Nostoc. А вот в отпечатках Dickinsonia нашлись следы холестерина, стало быть, это были уже настоящие животные.

Как вы там, потомки?

В 2014 году случилась сенсация: у ученых дошли руки до коллекций, собранных глубоководным тралом в 1986 году в пучинах Бассова пролива у берегов Тасмании. Трал применялся не простой, а хитрый, способный захватить парящих в толще воды животных на глубине 400 – 1000 метров. И вот почти треть века в баночках на полке в музее плескались странные существа, на которых никто не обращал внимания. А зря! Твари оказались очень странными. Они были описаны как Dendrogramma enigmatica и D. discoides. Дендрограммы выглядят как грибочки-лисички на ножке; внутри стебля идет канал, который в шляпке расходится дихотомически ветвящимся деревом, за что, собственно, зверюшки и получили имя. Такая конфигурация чрезвычайно напоминает эдиакарских Rugoconites tenuirugosus, R. enigmaticus, Albumares brunsae и Anfesta stankovskii. Да что уж скромничать – сходство с Rugoconites вообще абсолютное. Так что дендрограммы, возможно, являются уникальными реликтами эдиакарской фауны. Позже, в 2015 году, конечно, последовало разоблачение: генетический анализ новообретенных образцов показал, что тасманийские «грибочки» относятся к сифонофорам Siphonophorae семейства Rhodaliidae – давно известной группе кишечнополостных (кроме того, два описанных вида оказались единым). Но ведь это не отменяет сходства с эдиакарскими существами! Не является ли это доказательством существования сифонофор в венде?

Странный трехдольчатый Ventogyrus chistyakovi из венда Белого моря вполне мог быть сифонофорой; по другой версии это – первый гребневик, хотя современные гребневики делятся на четное число долек.

Кроме вендобионтов, в эдиакарии известны и другие существа. Inaria была похожа на губку с заглубленным в осадок полым, слегка сегментированным расширением и торчащей наружу трубкой десяток сантиметров длиной; судя по внутренним септам, потенциально она может быть кишечнополостным, а может – обломанным основанием кого-то типа Charnia. Arkarua adami напоминает пятилучевого иглокожего и даже иногда включается в класс Edrioasteroidea, хотя такое определение сугубо гипотетично.

В самом конце венда появляются и организмы, имевшие твердые покровы, особенно много найдено их в Намибии, Испании и Якутии.


Cloudina. Эдиакарское существо с твердым покровом


Cloudina, возможно, напоминала червей, живущих в известковых трубках, но могла быть и чем-то наподобие полипа. От них сохранились цепочки вставленных друг в друга кальцифицированных конусов, причем колонии клаудин были весьма плотными и многочисленными, образуя многокилометровые рифы. В трубочках клаудин обнаружены маленькие отверстия, первоначально интерпретированные как следы нападения хищников. Однако строго квадратная форма отверстий и химический состав скелета выдает истину: дырочки образовались из-за нарастания, а потом выпадения кристалликов доломита. Очень похожи на клаудин Sinotubulites, формировавшие те же рифы. Вместе с клаудинами жили и Namacalathus hermanastes, тоже обладавшие кальцитовым скелетом, но имевшие совсем другую форму – тонкая трубка, увенчанная восьмигранником с отверстиями на каждой плоскости. Protolagena были похожи на гладкую круглую вазу с горлышком (возможно, как и Inaria, это – основания вендобионтов типа Charnia), якутские Suvorovella aldanica и Mayella – плоские диски, Palaeopascichnus linearis и Orbisiana simplex – членистые ветвящиеся стебли, первоначально принятые за следы ползания.

Замечательно, что при ближайшем рассмотрении многие вендские существа со скелетом соответствуют таким же, но бесскелетным: Suvorovella – Aspidella и Eoporpita medusa, Cloudina – Conotubus, Sinotubulites – Corumbella, Protolagena – Sicilagena. Видимо, способность формировать домики возникала более-менее независимо и одновременно. Вопрос – зачем им это было нужно? Возможно, дело в хищниках, но, как уже говорилось, достоверных следов нападения на эдиакарских существ нет. А возможно, прочным существам было проще противостоять прибою, ведь они жили на мелководье.

Наконец, в венде появились первые билатеральные животные. Сейчас таких найдено довольно много. Вероятно, древнейшим примером является Vernanimalcula guizhouena из формации Доушаньто в Китае с древностью 580 – 600 млн л. н. Эти крошечные создания размером в десятую долю миллиметра уже, возможно, были не только двустороннесимметричны, но еще и трехслойны, обладали ртом, сквозной пищеварительной системой со ртом и анальным отверстием, а также замкнутым целомом, то есть полостью тела между двумя слоями мезодермы. В принципе, это краткое описание довольно продвинутого существа уровня кольчатого червя или моллюска, даже более крутого, чем плоский или круглый червь – вполне достаточно, чтобы считать Vernanimalcula Великим Предком.

Маленькая тонкость

Сквозная пищеварительная система – огромнейшее достижение. У кишечнополостных есть одно отверстие, ведущее в пищеварительную полость; фактически, гидра, коралловый полип или медуза – это наша гаструла, эмбриональная стадия в виде вмятого самого в себя мешочка. Такое существо может питаться только очень медленно, ведь глотать и гадить приходится через одно и то же отверстие, по очереди. К тому же при таком раскладе невозможно подразделить пищеварительную систему на отделы, во всем объеме должна быть одна и та же кислотность, по всей площади выделяются одни и те же ферменты, так что переваривать можно только какой-то один набор питательных веществ, а отходов получается очень уж много. Короче, такое питание неэффективно, обмен веществ низок, меню бедное, вкус неразвит, а жизнь скучна. Куда веселее становится, когда ротовое и анальное отверстия разделяются: теперь можно лопать без остановки, а пищеварительный тракт разделить на отрезки с разным назначением – тут мы перевариваем белки в кислой среде (назовем это желудком), а тут – жиры и углеводы в щелочной (пусть это будет кишечник). Потребление возрастает, обмен веществ растет, жизнь обогащается новыми смыслами – появляется повод еще кого-нибудь догнать и попробовать на вкус.

Некоторые шарообразные «акритархи» из Доушаньто – Tianzhushania spinosa, Appendisphaera tenuis и Ericiasphaera magna – оказались покоящимися яйцами многоклеточных беспозвоночных, окруженными оболочками, а другие – Megasphaera inornata, M. ornata и Parapandorina raphospissa – эмбрионами на разных стадиях развития, причем датировки их из разных слоев охватывают фактически весь эдиакарий. Парадокс в том, что сохранность яиц и эмбрионов фантастическая – отдельные клетки видны лучше, чем на многих современных препаратах, – а взрослых особей этих существ мы не знаем.

Беломорские Armillifera parva и Solza margarita с древностью 555 млн л. н. на первый взгляд – овальные «медузоиды» с невнятными радиальными бороздками, но при ближайшем рассмотрении в их строении выявляется право-левосторонняя симметрия и разница переднего и заднего концов, а потому они, возможно, были подвижными, хотя прямых доказательств этого пока не найдено. Эти существа могли быть моллюсками с мягкой раковиной сверху, типа современного слизня. Очень похожи, но обычно намного более вытянуты отпечатки Kimberella quadrata, найденные тоже на Белом море и в Австралии: перед передним концом кимберелл вроде бы видны следы смятого осадка, а иногда отпечатки расходятся веером, когда зверюшка ворочала «головой» в поисках более вкусных водорослей. Точно так же делают современные улитки. Вероятно, кимберелла уже имела радулу – ротовой аппарат с зубчиками для соскребания водорослей, характерные поскребы описаны под названиями Radulichnus inopinatus и Kimberichnus teruzzii. Все эти животные имели размер от пары миллиметров до пятнадцати сантиметров.

Совсем уж явно двустороннесимметричны два вида рода Parvancorina (P. minchami и P. sagitta) – разной степени вытянутости треугольные существа с явным утолщением в виде трезубца внутри или поверх тела. Парванкорина с самого начала рассматривалась как, возможно, древнейшее членистоногое и запросто может быть прямым предком трилобитов. Правда, парванкорина, в отличие от вендобионтов и примитивнейших кембрийских членистоногих, обладала аллометрическим ростом, то есть меняла форму с возрастом, но, с другой стороны, продвинутые членистоногие как раз характеризуются этой особенностью. Другие исследователи сравнивают парванкорину с видом Temnoxa molliuscula и считают чем-то вроде моллюска.


Parvancorina. Эдиакарское существо с билатеральной симметрией


Следы ползания каких-то сравнительно крупных существ по дну в виде двойных бороздок найдены в формации Такуари в Уругвае (585 млн л. н. или больше) и в долине Янцзы в Китае (541 – 551 млн л. н.). Уругвайские следы сплошные, там полз кто-то типа моллюска, а китайские выглядят как два плотных ряда точек, так что у оставившего их зверя, вероятно, были острые ножки. Правда некоторые критически настроенные исследователи считают, что подобные отпечатки могли остаться и после гигантского плазмодия, но, раз в начале кембрия уже существовали вполне развитые членистоногие, то какие-то предки в конце эдиакария уже должны были водиться. Найти их более внятные останки – дело времени и упорства, а возможно, они уже и найдены. Немецкий Xenusion auerswaldae – два параллельных ряда следов – достаточно уверенно классифицируется как ксенузия, ранний вариант онихофор, довольно продвинутых созданий с парными «ножками». Вероятно, именно подобные животные оставляли парные цепочки следов в Уругвае.

На самой границе венда и кембрия появляются Sabellidites и несколько родственных родов, которые многими исследователями уверенно относятся к кольчатым червям погонофорам Sabellida, тем более что из остатков сабеллидит выделен специфический для погонофор вариант хитина.

Маленькая тонкость

Возникновение двусторонней симметрии видится разным исследователям сильно по-разному. В целом, гипотезы разделяются на три группы.

Согласно планулоидно-турбеллярным (в том числе теория гастреи), первые многоклеточные напоминали планул – личинок кишечнополостных, то есть были двуслойными шариками с вдавленной внутрь полостью (фактически гаструлой) и одним ротовым (по совместительству и анальным) отверстием на нижней стороне. Такие живые пузырьки оседали на дно боковой стороной или ртом, начинали ползать, растягиваться и превращались в подобие современных плоских червей – турбеллярий-планарий.

По архицеломатной версии предки были похожи на четырехлучевых кораллов, кишечные карманы которых обособились, став целомом – полостью тела, тело вытянулось, утеряв радиальную симметрию, а первичное ротовое отверстие сначала растянулось в узкую щель, а после разделилось на ротовое и анальное.

Метамерные версии (они же цикломерные) предполагают, что пращурами были многолучевые полипы, тоже начавшие ползать и вытянувшиеся, но с той разницей, что кишечные камеры дали начало сегментам-метамерам, а изначально радиальные щупальца – боковым недоножкам-параподиям. Чисто гипотетически можно представить и такой вариант, что двусторонняя симметрия возникла из двухлучевой радиальной, но это маловероятно.

Вытягивание ротового отверстия отлично видно на разных возрастных стадиях Dickinsonia, причем и по типу симметрии она представляет что-то среднее между радиальной (у молодых), скользящей и билатеральной (у взрослых). Здорово, что и сравнительная геномика показывает то же самое: у полипов все Hox-гены работают сообща вокруг ротового отверстия, а у двусторонне-симметричных животных разделяются на передние и задние. Немалое значение тут имеет решение вопроса, что у первых многоклеточных было раньше, а что появилось позже – планктонный организм, облик которого сохранился в планктонной личинке, к которой добавилась жизненная фаза донного взрослого организма (теория конечной надставки), или же донная взрослая форма, лишь потом обретшая планктонную личинку (теория интеркаляции). Совокупность данных, учитывающих еще и особенности формирования нервных центров (наличие его у свободноплавающих личинок кишечнополостных и редукция у сидячих, сохранение и развитие его в мозговые ганглии у билатеральных животных), скорее свидетельствует о том, что изначальный предок был планктонным, а не прикрепленным организмом.

Вообще, есть серьезные сомнения, а имел ли общий предок вообще радиальную симметрию? Даже у многих сидячих кораллов есть явная тенденция к билатеральности, так что не исключено, что радиальность на самом деле вторична. Окончательное решение пока не найдено, новые находки докембрийских существ еще откроют нам правду.

Пока довольно сложно представить, как выглядели экосистемы венда-эдиакария. С одной стороны, удивительно похожие существа обнаруживаются в Австралии и на Белом море, с другой – понятно, что даже в одном месте сообщества различались в зависимости от конкретных условий – глубины, солености и освещенности. Есть даже мнение, что часть вендобионтов жила на суше и была лишайниками; в пользу этого приводится изотопный состав пород и острая неокатанная форма кристаллов, да и поздневендские грибы хитридиомицеты Vendomyces и лентовидные водоросли Vendovermites очень уж похожи на наземных существ, хотя большинство экспертов критикует версию «сухопутного венда». Не стоит забывать и о том, что венд-эдиакарий длился без малого сто миллионов лет! За такой срок, ясное дело, многое происходило.

Граница докембрия и кембрия ознаменовалась последним оледенением и массовым вымиранием. Исчезли многие анаэробные бактерии, строматолиты, водоросли и большинство акритарх, кем бы они ни были, а также все странные существа эдиакарской фауны. Наступили новые времена, новый эон – фанерозой.

* * *

В протерозое достоверно появились эукариотичность, аэробность и многоклеточность. События протерозоя задали размеры наших клеток, основной набор органоидов и темп существования. Возник потенциал быть большими и сложными. Под конец же протерозоя жизнь раскрутилась до билатеральных подвижных животных вполне зримого размера, вероятно, уже даже с ножками, пищеварительной и нервной системами. То, что у нас есть перед и зад, верх и низ, право и лево – достижения протерозоя.

* * *
Альтернативы

Отравление кислородом и грандиозные оледенения, превратившие Землю в одну гигантскую ледышку – уже достаточные причины для всеобщего вымирания. Просто чудо, что хоть кто-то выжил и вынес из случившихся катаклизмов новые полезные качества.

С другой стороны, безмятежный покой сонных эдиакарских морей – без движения, хищников и даже ртов – мог потенциально продолжаться до бесконечности. Сто миллионов лет прекрасно могли растянуться и на несколько миллиардов. А у планеты меж тем есть срок годности.

Планету могли захватить самые разные существа, например грибы, особенно в симбиозе с водорослями. Их общих дарований и жизнестойкости вполне хватило бы для полной победы над конкурентами. Планета-грибница, планета-лишайник, мохнатый ком, вращающийся вокруг Солнца и своими неубиваемыми спорами захватывающий Луну, Марс, астероиды… Вполне реальный сценарий; кто знает, сколько подобных заплесневелых планет крутится во Вселенной?

Часть II. Палеозой: утро

Кембрий

541 – 485,4 миллиона лет назад:

Планета-печка и Великая Революция


МЕЖДУНАРОДНАЯ ШКАЛА

541 млн л. н.: терренувская эпоха фортунский век (529) – ярус 2 (521) – отдел 2 ярус 3 (514) – ярус 4 (509) – отдел 3 ярус 5 (504,5) – друмский век (500,5) – гужанский век (497) – фуронгская эпоха паибский век (494) – янгшанский век (489,5) – ярус 10 (485,4)


РОССИЙСКАЯ ШКАЛА

541 млн л. н.: немакит-далдынский век верхнего венда (529) – ранний кембрий: томмотский век (521) – атдабанский век (514) – ботомский век – тойонский век (509) – средний кембрий: амгинский век (504,5) – майский век (500) – аюсокканский век (497) – сакский век (около 492) – аксайский век (около 489) – батырбайский век (485,4)



Кембрий – один из величайших периодов нашей истории. В это удивительное время появился весь наш мир, все главные группы живых существ. Строго говоря, описав кембрий, можно уже не тратить время на оставшиеся периоды, дальше были только бесконечные пересказы и вариации на тему. Единственное, чего не хватает для полноты картины – жизни на суше. Но и сейчас Земля – планета-океан, так что сухопутные экосистемы, в общем-то, являются экзотическим приложением к основным морским. А в кембрийских морях было весело; биоразнообразие даже превышало современное, так как, кроме почти всех современных типов, тогда плавали, копошились и колыхались самые фантастические создания. И чем больше исследователи изучают их, тем лучше осознают, что нам ведома лишь малая толика кембрийских чудес.

* * *

Африканская гляциоэра кончилась, Земля оттаяла, наступил кембрийский оптимум – самое жаркое время за весь фанерозой. Планета прыгнула из фазы снежка до фазы пирожка. Лавразия и Гондвана продолжали разъезжаться друг от друга и трескаться на куски. Мир радикально поменялся.

Перестройку фауны называют «кембрийским взрывом» или «кембрийской революцией». В геологической летописи это обычно действительно выглядит как волшебство: почти пустые камни докембрия сменяются изобилием кембрия. Дно морей заполоняют совершенно новые существа, большинство – с твердыми элементами тела: губки, моллюски, хиолиты, брахиоподы, приапулиды, онихофоры, членистоногие, щетинкочелюстные, иглокожие, полухордовые граптолиты и хордовые.

Такое преображение долгое время казалось крайне загадочным и даже использовалось креационистами как доказательство творения жизни. В настоящее время причины «кембрийского взрыва» подробно изучены и разобраны. Вырисовывается следующая картина.

В конце венда все указанные выше группы животных уже существовали, но были представлены мелкими планктонными формами, не имевшими твердых покровов. Дело в том, что кислорода на большой глубине все-таки не хватало, тяжёлые существа тонули, погружались в анаэробные бездны и задыхались. Около дна же кислорода не хватало, так как на сравнительно большой глубине было темно, отчего там не жили фотосинтетики. Темно же было, так как вода была весьма мутная, поскольку гибнущие живые организмы (а мы помним, что продуктивность докембрийских морей была не меньше нынешней, тем более что в верхних слоях холодной воды ледникового периода кислорода растворялось более чем достаточно), особенно планктонные, превращались во взвесь, которая болталась в толще воды, закрывая солнце и не давая шансов придонным фотосинтетикам (неспроста некоторые исследователи считают вендобионтов анаэробными хемосинтетиками; это объясняет отсутствие у них пищеварительной системы и удивительную пассивность). В отсутствие хищников и эффективных падальщиков взвесь только накапливалась. Но появление потребителей этой органики было делом времени. Ключевым стало возникновение эффективных планктонных фильтраторов, вероятно схожих с современными рачками. По-видимому, помогло делу и потепление, из-за которого растаяли ледники, воды мирового океана опреснились, стали менее плотными, перестав держать на весу мало-мальски крупные частицы. Из-за этого планктонным существам пришлось обзаводиться всяческими отростками и лопастями для парения в воде, а побочным эффектом могло стать и появление фильтрующих органов. Фильтраторы стали отцеживать взвесь и склеивать ее в пеллеты – попросту говоря, какашки. Параллельно возникновение сквозной пищеварительной системы, как уже говорилось, способствовало бодрости – возможности активно плавать, а не сидеть сиднем на дне, ускорению обмена веществ и росту потребления, а стало быть – и росту числа отходов. Пеллеты, будучи сравнительно большими – до 1 мм длиной, стали тонуть (между прочим, из них состоят многометровые толщи пеллетовых известняков по всему миру), вода стала прозрачнее, солнечные лучи начали достигать глубин, там завелись водоросли, которые обогатили придонные слои кислородом. Животные смогли жить на дне, а всем известно, что глубже дна не провалишься. Впрочем и глубже не беда – возникли роющие твари, начавшие копать вертикальные норки, через которые кислород стал проникать в верхние слои придонного ила. Стало возможным быть крупным и тяжелым, благо высокоэнергетичное аэробное дыхание позволяет производить твердые элементы тела (если задуматься, твердый предмет – такой, на разрушение которого надо потратить много энергии, а значит, по закону сохранения энергии, при его создании было потрачено не меньше энергии, вложенной в межмолекулярные связи).

Конечно, во всей этой цепи рассуждений есть тонкие моменты. Освободило ли эдиакаро-кембрийское вымирание вендобионтов дорогу новым существам, или появившиеся активные хищники сожрали предыдущую биоту и привели ее к кризису? Байконурское оледенение или, напротив, последующее потепление с уменьшением растворимости кислорода в воде ответственно за вымирание и возникновение нового типа планктона? А может, наоборот, из-за вымирания массы продуцентов углерод стал меньше уходить в осадок, а ранее ушедший, погружаясь в зонах тектонических разломов в магму, высвобождался в атмосферу, создавая парниковый эффект и завершая африканскую гляциоэру? Где тут причина, а где следствие? Скорее всего, система работала с обратной связью, как цепная реакция, причины вызывали следствия, а те подстегивали причины, наращивая эффект.

Кроме прочего, как ни парадоксально, одно из главных отличий поздневендской и раннекембрийской фауны заключается в том, что для венда характерны гигантские медузоиды до 30 – 40 см в диаметре и перистовидные колонии полипов величиной более 1 м, а в самом начале кембрия – томмотском веке – обнаруживаются лишь крошечные тварюшки, так называемая «мелкораковинная фауна».

Еще стоит учитывать, что граница эонов не была такой уж резкой. Как ни странно, никто не знает, где лучше всего проводить линию. Лучшее этому свидетельство – расхождение российской и международной шкал: наш немакит-далдынский ярус верхнего венда более-менее соответствует «международному» фортунскому ярусу нижнего кембрия. А нижняя граница фортунского яруса определена даже не по нормальным ведущим ископаемым, а по ихнотаксону Trichophycus pedum (он же Treptichnus pedum) – окаменевшим норкам каких-то неведомых роющих животных, научившихся копать не только горизонтально, но и вертикально. Нормальные же, например, трилобиты появляются гораздо позже – в атдабанском ярусе. А вы еще говорите: «Кембрийский взрыв, кембрийская революция»!..

В реальности все вышеуказанные события заняли огромный промежуток времени, ничто не случается мгновенно. Между надежным исчезновением эдиакарских вендобионтов и появлением приличной фауны с узнаваемыми трилобитами и брахиоподами прошло не менее нескольких миллионов лет. Этот отрезок по длине сопоставим с теми, за которые из невнятных недоящериц возникли черепахи, из наземных копытных хищников – морские киты, из четвероногих древесных человекообразных обезьян – двуногие наземные люди.

Самые многочисленные и хорошо изученные местонахождения кембрия расположены в Якутии, отчего почти все ярусы этого периода носят якутские имена (что, конечно, не могло понравиться создателям Международной шкалы, которые часть названий заменили на китайские, а часть ярусов вообще оставили безымянными, просто пронумеровав их). Раннекембрийских отложений известно не так уж много, что печально, так как именно в это время происходило самое интересное. Наиболее информативные отложения с идеальной сохранностью фауны середины раннего кембрия – сланцы Маотяньшань в уезде Чэнцзян округа Юйси, а также Хайкоу в соседнем округе Куньмине в южнокитайской провинции Юннань с датировкой около 518 млн л. н. или несколько меньшей (конец атдабанского века; конечно, не обошлось без громких заявлений о возрасте в 560 – 534 или 525 – 520 млн л. н., но, как часто бывает с китайскими местонахождениями, позже Маотяньшань заметно помолодел), а также Сириус Пассет на крайнем севере Гренландии того же возраста. Чуть более поздние – ботомского века – Синские местонахождения в Якутии содержат отпечатки удивительно похожих организмов. Всего на несколько миллионов лет моложе, но формально уже среднекембрийского возраста одно из самых знаменитых мест – сланцы Бёрджес в Канаде с датировкой 510 – 505 млн л. н. (в среднем 508 млн л. н.).

Скелетные существа в Маотяньшань, Сириус Пассет и Бёрджес точно такие же, как в других среднекембрийских местонахождениях. Тем чудеснее, что «твёрдые» организмы составляют примерно одну седьмую от общего числа обнаруженных в сланцах видов, а все остальные – мягкотелые. Это показывает, насколько наши знания о древних экосистемах обрывочны. При этом в сланцах абсолютно преобладают донные формы, но почти не представлены планктонные (донных найдены десятки тысяч отпечатков, а некоторые виды свободно плавающих животных обнаружены в единичных экземплярах), так что реальное разнообразие можно смело помножать еще надвое.

* * *

Экосистемы кембрия по сравнению с докембрийскими имеют очевидный перекос в сторону эукариот. Конечно, строматолиты и прочие бактериальные пленки никто не отменял – они существуют и поныне, – но «центр тяжести» определенно сместился. В частности, появляются первые фораминиферы Platysolenites antiquissimus, известные уже из немакит-далдынского века Якутии (вендского по российской шкале и раннекембрийского по международной). В последующем эти крошечные одноклеточные существа, строящие вокруг своего амебоидного тельца карбонатные раковинки, станут величайшими преобразователями планеты. Над дном морей возвысились биогермы – известковые постройки водорослей. Они всегда четко отграничены от окружающего пространства и были своеобразными оазисами жизни.

Особой и главной группой рифостроителей кембрия стали археоциаты Archaeocyatha – особые кубкообразные существа, близкие к губкам или даже бывшие примитивными губками. Они возникли в самом начале томмотского века, то есть в начале кембрия, где ведущим ископаемым является Nochoroicyathus aunnaginick. Археоциаты чрезвычайно разнообразны – существовали маленькие и большие, одно- или двустенные, крупно- и мелкоячеистые, одиночные и колониальные, иногда они нарастали друг на друга, формируя огромные стены на дне моря. Археоциаты широко распространились почти по всему миру, они не найдены только в Скандинавии и Англии. Наибольший расцвет эти организмы получили в начале и середине кембрия, а потом стали очень редкими, хотя последние на Северном Урале дотянули аж до лудловской эпохи позднего силура. Современные губки Petrobiona massiliana и Vaceletia crypta очень похожи на археоциат и даже рассматривались как «живые ископаемые».

Закат археоциат мог быть вызван разными причинами – конкуренцией с красными водорослями и нормальными губками, а возможно – повышением содержания магния в воде и другими гидро- и геохимическими изменениями.

Параллельно с археоциатами возникают и обычные губки Porifera (или Spongia). Судя по их многообразию в начале кембрия, появились они еще в протерозое, а некоторые вендские микрофоссилии иногда прямо засчитываются за иглы губок. Интересно, что, судя по обрывкам генетического разнообразия современных губок, их древнейший предок мог быть более развитым, например, иметь нормальную пищеварительную систему, а в последующем заметно деградировать.

Как вы там, потомки?

Морфологически губки близки к той границе, перед которой назвать существо многоклеточным нельзя. Строение губок просто и незамысловато, ведь у них нет систем – ни двигательной, ни дыхательной, ни кровеносной, ни выделительной, ни половой, ни нервной, ни даже внятной пищеварительной; нет даже тканей в полном смысле этого слова; обмен веществ прост, как кирпич. С другой стороны, это обеспечивает живучесть: губки отлично почкуются. Антарктическая губка Scolymastra joubini способна жить до 5 – 15 тысяч лет, а Monorhaphis chuni – до 18 тысяч!

Конечно, самые показательные эксперименты в смысле поиска грани одно- и многоклеточности, когда губок протиранием через полотно разделяли на отдельные клетки, а потом эти клетки складывали в кучку. Они, оклемавшись, выпускали ложноножки и начинали сползаться обратно: уже через четыре часа во вполне плотную компанию, через три дня в решетчатый каркас, а через недельку – в полноценный организм. Жидкометаллический терминатор, собирающийся из капелек, не так уж оригинален. Более того, если смешать клетки некоторых губок (а для прикола можно их еще покрасить в разный цвет), то они не перепутаются, а правильно распределятся по своим индивидам. Все это доказывает, что, с одной стороны, клетки губок способны к самостоятельной жизни, а с другой – все-таки стремятся жить единым организмом.

Специализация клеток достаточно велика, чтобы не считать губок колониальными существами, а самое главное – не все клетки могут

Инге, Володе и Маше – моей любимой семье

* * *

Миллиарды лет вокруг Солнца вращается Земля. Примерно четыре миллиарда лет на ней копошится жизнь. Мы – лишь завершающий этап долгой и сложной истории, состоящей из мириадов странных созданий, изобретавших причудливые способы передать своё наследство дальше. Процесс этот долог и непрерывен. Но много раз планета сотрясалась катаклизмами. Метеориты и вулканы, оледенения и потопы, само развитие жизни регулярно приводили к массовым вымираниям и вслед за ними – всплескам разнообразия. Благодаря этому геологи и палеонтологи могут разделить всю историю на отрезки.

О первом из них – докембрии – мы знаем очень мало. Из мрака вселенской ночи выплыла планета, в сумраке первобытного океана шли странные химические реакции. Во тьме веков теряются важнейшие тайны бытия – зарождение жизни как таковой, появление ДНК, многоклеточности и полов. Это – ночь и рассвет планеты.

Второй из них – палеозой – освещён гораздо полнее. Встающая заря полноценной и понятной нам жизни представлена уже во всех своих ярких красках. За шесть периодов возникли все столпы нашей действительности, все главные группы организмов, все ключевые экосистемы.

Блистательный палеозой закончился крахом. Оставались ещё двести пятьдесят миллионов лет, полдень планеты – мезозой и наше время – кайнозой, в которые природа доводила полученное до логического – и даже разумного – конца.

Конца ли? Да уж, стоит разобраться в прошлом, чтобы настоящее не стало концом…

Введение

Кажется, что в вихре тысячелетий кружатся в безумном хороводе причудливые чудища, рвут друг друга на части, хаотично сменяют одно другого, пропадают и вновь возникают из ниоткуда. Но нет! Не так работает эволюция!

Чудищ, конечно, хватает. И они действительно иногда друг друга рвут, но их коловращение отнюдь не беспорядочно. Во всём есть определённая логика, и её постижение – суть палеонтологии.

Вообще, изложение прошлого в популярных книгах обычно строится тремя способами. Первый – описание истории палеонтологии, путешествия и приключения учёных, их поиски как полевые, так и интеллектуальные, споры и даже сражения, причём порой вполне буквальные. История науки поучительна и, бывает, мотивирует новых апологетов знания на продолжение подвигов. Идеальные примеры таких книг – «Жизнь охотника за ископаемыми» Ч. Штернберга (1936 г.), «На поиски динозавров в Гоби» А.К. Рождественского (1969 г.), «Тайны пылающих холмов» В.Г. Очева (1976 г.) и «Записки палеонтолога» Н.К. Верещагина (1981 г.). Конечно, у такого стиля есть и недостатки: кого выкрошил молотком из камня автор, про того и узнает читатель; цельную картину эволюции сложить из таких впечатлений невозможно.

Второй способ – описание ископаемых существ. Без фактов жить трудно, без них невозможно строить концепции и теории. Лучшие образцы – книги Й. Аугусты и З. Буриана «По путям развития жизни» (1966 г.), З.В. Шпинара и З. Буриана «История жизни на Земле» (1977 г.), Ю.А. Орлова «В мире древних животных» (1989 г.), а также М.Ф. Ивахненко и В.А. Корабельникова «Живое прошлое Земли» (1987 г.). Беда лишь в том, что зачастую книги, построенные по такому принципу, превращаются в занудные каталоги бесконечных и однотипных «завров».

Третий подход – изложение идей о том, почему шла эволюция, что её двигало, как влияли на живых существ астрономические и геологические события, как сами эти существа взаимодействовали между собой. Строго говоря, это – самая суть палеонтологии. Практически образцовые примеры – уникальные книги К.Ю. Еськова «Удивительная палеонтология» (2007 г.) и А.Ю. Журавлёва «Сотворение Земли» (2019 г.). Но и этот подход без богатого фактажа рискует скатиться в бесплодное теоретизирование и прикольные, но не слишком осмысленные «размышлялки».

Одна из великих проблем популяризации палеонтологии – прочный стереотип, что это «прикольные динозаврики для детишек». На лекции по палеонтологии, даже если они заявлены как довольно научные, родители гарантированно приводят трёх-пятилетних малышей. В 99 % случаях новейшие книги по палеонтологии – действительно книжки с картинками для дошкольников и школьников. Стандартный их вид – большие яркие иллюстрации (часто совершенно недостоверные) и минимум подписей (чаще всего довольно унылых и тоже не слишком отвечающих современному уровню науки). С одной стороны, понятно, что внешний вид ископаемых существ действительно часто впечатляет, а без картинок тяжело представить их. С другой же, всё изобразить невозможно, а в наш век интернета с минимальными усилиями легко найти изображение почти любой древней твари. Скучное же перечисление «жил там – тогда – метров в длину» должно быть лишь скелетом повествования, тогда как кровь и плоть книги должны бы составлять объяснения причин и закономерностей происходившего и влияния прошлого на современность.

Можно ли совместить плюсы разных подходов и постараться избежать минусов? Что ж, попытаемся это сделать. Конечно, желающего приобщиться к чудесам палеонтологии ждёт немало испытаний. Одно из них – мудрёные и бесчисленные латинские названия. Без них никак не обойтись. Русских названий по понятным причинам для подавляющего большинства древних существ нет; иногда в детских книгах латынь заменяют русской транскрипцией, но это – самый ужасный вариант, потому что заинтересовавшийся читатель потом не сможет найти подробностей и развития истории в других источниках. Впрочем, в нашей книге транскрипция будет иногда применяться для меньшей громоздкости и избежания повторений, но с обязательным озвучиванием нормального латинского имени, хотя бы и в другом разделе текста. Зато названия бывают поучительны, интересны и даже забавны. Лучше всего расслабиться, не пытаться запомнить все имена – их миллионы, всё равно не получится – и воспринимать латынь как музыку сфер; тогда постижение палеонтологии становится гораздо приятнее. В случаях, когда известно много видов какого-то рода, в нашей книге приводятся только родовые названия; если вид только один или конкретный вид чем-то особенно выдаётся, приводится и видовое наименование.

Между прочим, систематика многих и многих групп крайне запутана и спорна, так что, во избежание лишних споров, в большинстве случаев в книге не указывается ранг систематических групп – всё равно найдётся противоречащая точка зрения.

Изобилие латыни позволяет бороться с важнейшим стереотипом, огромной бедой современного бытового мышления. Часто в книгах по палеонтологии в стремлении к упрощению всё богатство древних форм сводится к нескольким знаковым существам, дескать, «в палеозое жили трилобиты, в мезозое – динозавры, а кайнозой – время млекопитающих», поминается парочка переходных видов и парочка «живых ископаемых», причём примеры из книги в книгу приводятся одни и те же. У многих людей после чтения подобных книг складывается устойчивое впечатление, что «ничего-то и не известно, пару огрызков нашли – и насочиняли, вся эта наука – полная ерунда», за чем обычно следуют мутные рассуждения про творцов, инопланетян и прочий бред. В реальности наука располагает сведениями о сотнях тысяч древних видов! Уж чего-чего, а недостатка в данных у палеонтологов нет, только успевай изучать. Хоть немного отразить это великолепие, чтоб в глазах зарябило и в ушах зашумело, – одна из главных задач нашей книги. Для облегчения жизни читателя великие предки ключевых групп живых организмов так и названы «великими предками», а наши (наши-то нам интереснее всего!) даже «Великими Предками». Особо упорные могут попробовать их посчитать.

Тут мы плавно переходим к следующей сложности – обилию материала. Любитель прошлого должен быть готов помнить великое множество фактов и уметь ими интеллектуально жонглировать. Между прочим, это проблема и для автора: невозможно быть специалистом во всём. Именно поэтому многие крутые палеонтологи отказываются писать обобщающие труды. Специалист по брахиоподам может ничего не знать о звероящерах, палеоботаник мало смыслит в рыбах, знаток грызунов не отличит конфуциосорниса от энанциорниса. А куда деваться! Специализация – не повод не писать обобщающих книг. Я – автор труда, который Вы держите в руках – антрополог, то есть специалист по человеку. Но я же и биолог, то есть общая логика исследования в других биологических специальностях мне известна. И всегда надо помнить, что планета у нас не такая уж большая, биосфера на ней одна, взаимосвязи и взаимовлияния не случайны. Прошлое человека сложилось из нужд и сложностей наших предков, живших от докембрия до наших дней. На наше появление и особенности повлияли условия на первоземле и дрейф континентов, кометы и астероиды, солнечная активность и геологические процессы, конструкция раковины первых моллюсков и специфика корней примитивных растений, тип размножения подёнок и злоба хищных динозавров, симбионты в кишечнике термитов и красота цветов, несовершенство лап креодонтов и совершенство кошек… Всё это и многое другое – наше прошлое, без этого человек или вообще не появился бы, или был бы совсем иным. Так кому же, как не антропологу, писать обзор живого прошлого Земли?!

Прежде чем приступать к истории жизни, хотелось бы выразить глубочайшую признательность и высказать огромнейшее спасибо всем, кто способствовал улучшению данной книги. Мелине Ананян координировала работу над книгой с самой идеи до выхода в свет. Александр Борисович Соколов взял на себя тяжкий труд поиска редакторов и уговорил их на подвиг быстрейшего прочтения и комментирования немаленького текста. Павел Владимирович Селиванов высказал ценнейшие замечания по части датирования, геологии и палеогеографии; благодаря ему эта сторона книги стала чуточку правдивее. Павел Петрович Скучас выполнил едва ли не самую трудную задачу – проверил и разобрал почти всю зоологию, внёс важные правки и безжалостно раскритиковал многие мои пассажи. Сергей Владимирович Наугольных просмотрел ботаническую часть. Шурупова Яна Андреевна проконтролировала беспозвоночную часть книги. Михаил Сергеевич Гельфанд внимательно прочёл весь текст и сделал много концептуальных замечаний. От всей души благодарю всех научных редакторов за их усилия и потраченное время! И, конечно, заранее извиняюсь перед научными редакторами, что, идя на поводу популярной направленности книги, я учёл не все их желания, так что, если Уважаемый Читатель найдёт ещё какие-то упущения, вся вина лежит исключительно на авторе.

Отдельную благодарность выражаю редакторам Марии Шатулиной и Екатерине Семёновой, любезно взявшим на себя нелёгкую задачу внести мои правки в итоговый текст, без них я бы наверняка не уложился в сроки, а также Марише Яковлевой, чья энергия немало способствовала ускорению всего процесса.

Палеонтология

Для начала стоит определиться с понятиями. Как уже говорилось, многим представляется, что палеонтология – «наука о динозавриках». Но нет.

Палеонтология – наука об органическом мире прошлого и условиях его существования.

Палеонтология – наука об органическом мире прошлого и условиях его существования. В этом кратком определении важны обе составляющие. Во-первых, палеонтология изучает все жившие раньше организмы, а не только животных. Например, изучением царства животных занимается палеозоология, которая сама делится на много частей: насекомых изучает палеоэнтомология, рыб – палеоихтиология и так далее. Царство растений – вотчина палеоботаники, а для водорослей внутри неё предусмотрена палеоальгология. Не менее существенна и вторая часть определения палеонтологии: изучение условий существования древних живых существ – принципиальный раздел этой науки. «Отчего и почему» бывают гораздо интереснее, чем «что и когда».

Понятно, что в помощь палеонтологии и неразрывно с ней существуют смежные дисциплины, например, огромный комплекс методов датирования, палеоклиматология и палеогеография, а также прочие. Огромную важность для палеонтологии имеет геология в самом широком смысле этого слова. Профессиональному палеонтологу не мешает знать химию. Хорошо бы ещё уметь работать руками – как в поле геологическим молотком и кайлом, так и в лаборатории хитрыми растворами, препаровальной иглой и бинокуляром, а нынче и более технологичными инструментами – электронным микроскопом, томографом, хромато-масс-спектрометром и секвенатором.

Собственно, труд палеонтолога состоит из трёх основных стадий.

Поиски и раскопки. Для начала надо найти место, где сохранились ископаемые остатки. Иногда это бывает итогом счастливой случайности: при работах в карьере или шахте, рытьё котлована или распашке земли, обрушении склонов или размывании оврагов на поверхность «всплывают» слои с окаменелостями. Если нашедший их достаточно грамотен, он сообщает о находке в институты и музеи, откуда специалисты спешат к месту, пока уникальные артефакты не уничтожены силами природы или усилиями людей. Но и сами палеонтологи предпринимают активные усилия для поисков: каждую весну и осень, когда земля свободна и от снега, и от травы, поисковики ползают по балкам и каменным стенам, пляжам и пустыням, тщательно осматривая все потенциально богатые места. Ясно, что не всегда этот энтузиазм понятен местным жителям. Каждому палеонтологу (кстати, и археологу) до боли знакомы фразы «что, золото-то уже нашли?» и «что, оружие ищете?» Переубедить вопрошающих иногда невозможно. Не может же взрослый человек всерьёз искать окаменевшие кораллы и кости?..

Но современные палеонтологи идут дальше. Геологи в XIX и особенно XX веке отлично поработали: практически для всех территорий давно составлены подробные геологические карты с указанием выходящих на поверхность пород, их возраста и особенностей формирования. Так что палеонтолог может фактически на заказ искать то, что его в данный момент интересует. Уже классический пример – поиски переходной фазы между рыбами и амфибиями: исследователи посмотрели по геологической карте, где залегают наиболее богатые выходы девонских мелководных и пресноводных отложений, поехали туда и спустя пару сезонов нашли-таки скелет тиктаалика.

Сами раскопки могут выглядеть очень по-разному. Въевшийся стереотип о помавании кисточкой – на 99 % миф. Даже само слово «раскопки» не слишком отражает реальность. Порой «раскопки» – это промывка песка из какого-нибудь ручья ситом по методике золотоискателей прошлого; так, например, в среднерусских речках отлично находятся зубы мезозойских акул. Иногда это могут быть поверхностные сборы, если камни сами крошатся и их можно даже не особенно колоть молотком. Иногда, напротив, приходится изрядно попотеть и помахать киркой или задействовать экскаваторы и бульдозеры. Один большой скелет динозавра или слона учёные могут расчищать много лет подряд, особенно в высоких широтах, где полевой сезон короток. В приполярных областях Сибири, Аляски, Канады и в Антарктиде сезон совсем махонький, туда трудно добраться, а порой ещё труднее оттуда выбраться. Тамошние раскопки – суровый экстрим.

Бывают, конечно, и райские условия. Например, над уникальным местонахождением меловых птиц в Чаояне китайцы построили огромадный купол-павильон, да ещё в виде скелета, так что учёные могут спокойно и комфортно работать там круглый год. Встречаются и совсем странные способы добычи ископаемых. Например, в Бирме местные жители вымывают бесконечное число мелового янтаря, который содержит уникальнейшие включения – от растений, пауков и насекомых до ящериц, энанциорнисов и частей динозавров. Исследователи сами не ищут янтарь, а покупают его на местных рынках; что ни год, выходит десяток сенсационных статей по материалам из бирманского янтаря. На юге США в пустынях роль бирманских крестьян выполняют муравьи: отчего-то им очень нравятся зубы мезозойских млекопитающих, которые они тащат в муравейники. Палеонтологи давно прочухали эту особенность трудолюбивых насекомых и нагло разоряют их жилища, добывая сразу готовую коллекцию (и учёных можно понять – попробуйте-ка на пятидесятиградусной жаре поползать по каменистой пустыне в поисках зубов, которые глазом-то трудно различить). В некоторый момент пришлось даже вводить ограничение на число раскапываемых муравейников, чтобы алчные исследователи не извели бедняг мурашек под корень.

Реставрация и препаровка. Принесённые в лабораторию образцы обычно ещё надо долго чистить, этим занимаются специалисты-препараторы. Между той трухой, что найдена, и той красотой, что предстаёт в витринах музеев, на страницах статей и книг – огромная дистанция. Препарирование – отдельный вид искусства, для него нужен талант, невероятное терпение, надёжные руки и много знаний. Крутые препараторы уникальны и идут нарасхват. Иногда очистка сложного образца занимает не то что год, а годы. Бывает, что вмещающая порода прочнее самой окаменелости, тогда приходится задействовать не только специальные препаровальные машинки, но и кислоты и прочие химикаты. Иногда образец даже намеренно разрушают, например пилят и зашлифовывают, чтобы получить ценную информацию. Классикой стали работы по кровеносной и нервной системам панцирных рыб, когда их черепа шлифовались с маленьким интервалом, каждый шлиф подробнейше зарисовывался, а в итоге получалась стопка рисунков – трёхмерная модель черепа со всеми мельчайшими канальцами. Нынче, напротив, проще бывает вообще не доставать образец из камня, а просветить его томографом; полученная информация может оказаться богаче, чем при очистке. Понятно, широко используется микроскопирование. Один из впечатляющих методов – золотое напыление на особо мелкие образцы для повышения контрастности. Золотые зубы силурийских рыб – это не только научно, но и красиво-богато.

Реконструкция, интерпретация, публикация и обсуждение. Главное в работе палеонтолога, конечно, – понять, что, собственно, попало в его руки, и почему оно когда-то было таким, а не иным. Обычно окаменелость не целая, тогда надо попытаться реконструировать недостающие части; тут исследователя ждут коварные ловушки, примеры которых ещё будут приведены в книге. Важнейшая часть исследования – подробное описание; в скучном варианте на нём всё и заканчивается. Но хорошо бы продвинуться дальше и объяснить, что довело древнее создание до жизни такой, а зачастую и до вымирания. Тут важно, с одной стороны, включить воображение, а с другой, – держать его в узде и разумных рамках. Совсем без интерпретации пропадает смысл науки, но и безграничное фантазирование бессмысленно. Придумать можно что угодно, а доказать – только реальность. Нам надо не придумать, как могло бы быть, а выяснить, как было на самом деле. Конечно, сплошь и рядом встречаются трудные случаи, так что споры учёных не затихают порой годами и десятилетиями.

Чрезвычайно важный момент исследования – публикация результатов, дабы они были доступны как можно большему числу людей. Это – принципиальнейшее условие науки. Именно поэтому не является наукой частное коллекционирование. Бывает, что супер-ценные образцы лежат у любителей в шкафах на полочках, но рано или поздно оказываются в помойке и пропадают, так и не будучи описаны. Случается, что и в музейной коллекции окаменелость покоится много лет, пока до неё дойдут руки, ведь число находок на порядок больше, чем число учёных. Но музейная коллекция по крайней мере никуда не денется, к ней прилагается документация, специальные условия гарантируют сохранность, так что будущие исследователи могут поработать с экспонатами, возможно, применив новые методы. Конечно, иногда и любители могут публиковать статьи, но таких грамотных специалистов, не являющихся профессиональными палеонтологами, во всём мире пара человек. Всё же палеонтология – это серьёзная профессия, требующая полной отдачи, времени, специальных навыков и знаний, заниматься ей «в свободное от работы время» как хобби почти нереально.

Мораль, думается, ясна: если волей случая вам в руки попал ценный образец, подавите в себе плюшкинизм, отнесите находку палеонтологам, тогда о ней узнаете не только вы, а и весь мир. Для частного же коллекционирования есть миллионы массовых находок, не представляющих эксклюзивного значения для науки.

В своей работе палеонтологи руководствуются несколькими сравнительно простыми принципами, облегчающими жизнь.

Принцип актуализма. «Настоящее – ключ к познанию прошлого»: признаки современных организмов позволяют реконструировать черты древних существ, то есть это – изучение прошлого с помощью настоящего. Например, если мы знаем, что панцирь современных черепах нужен им для защиты, то легко догадаться, что той же цели служил панцирь панцирных рыб, некоторых текодонтов, панцирных динозавров, ископаемых броненосцев и прочих подобных тварей. Если огромные клыки современных львов и леопардов нужны для убивания и разрывания добычи, то логично, что так же применялись клыки звероящеров.

Принцип историзма. «Прошлое – ключ к познанию настоящего»: выявление исторических предпосылок современности, то есть изучение настоящего с помощью прошлого. Всё произошло на какой-то основе с исходно другим предназначением. Например, существование и строение жабр у наших предков-рыб объясняют примерно половину нашего строения и поведения. Не зная эволюции жаберного аппарата, затруднительно объяснить анатомию наших челюстей, желёз, многих мышц, а также, скажем, зевоту. Одно из ключевых понятий тут – преадаптация, то есть ситуация, когда некая черта возникла для одной какой-то надобности, но в новых условиях пригодилась совсем для другой. Например, исходные плавниковые складки первых рыбообразных были нужны для того, чтобы держать равновесие и не слишком кувыркаться в воде, потом в ордовике они начали ундулировать – волнообразно изгибаться – и стали дополнительным двигателем, после в силуре разделились на плавники, затем в кистепёром виде они оказались удобны для переползания через брёвна, заваливавшие дно мелких девонских водоёмов, преобразовались в передние и задние конечности наземных амфибий и рептилий, у млекопитающих пригодились для лазания по ветвям, а в конце миоцена задние стали у нас ногами, а передние – руками, которыми я сейчас пишу эти строки. Каждая стадия была необходима для последующей, а её особенности определяли странности конструкции нового органа у потомков. Эволюция ничего не создаёт на пустом месте, а смена назначения органов бывает весьма неожиданной. «Я тебя слепила из того, что было» – главный девиз процесса.

Принцип историзма более чем срабатывает и в концептуальных моментах. Например, слияние всех кусков суши в Пангею в перми стало причиной похолодания и поводом для возникновения теплокровности у зверозубых рептилий, а вымирание динозавров в конце мела явилось достаточной причиной последовавшего всплеска разнообразия млекопитающих.

Морфофункциональный анализ – изучение древнего организма в связи с его образом жизни. Признаки «заточены» под конкретные условия, а смена условий вызывает смену признаков. Классический пример – описанная В.О. Ковалевским эволюция лошадей. Древнейшие палеоценовые и эоценовые предки жили в лесах, у них были низкие бугристые коронки зубов, приспособленные для пережёвывания плодов и листьев, и много растопыренных пальцев на коротеньких ножках, чтобы не слишком вязнуть в сырой и рыхлой почве, усыпанной прелыми листьями. Далее леса постепенно сменялись кустарниковыми зарослями и степями, в пище увеличивалась доля злаков, отчего зубы стали высококоронковыми и гребнистыми, а ноги менялись под более сухую землю равнин – стройнели и прочнели, а число пальцев сокращалось вплоть до одного.

Другой пример, вокруг которого до сих пор бушуют споры, – образ жизни тираннозавридов. Всякий знает, что огромные тероподы были ужасными хищниками, не дававшими проходу травоядным динозаврам. Однако исследование пропорций слепков их мозга – эндокранов – показывает, что тираннозавриды имели очень плохое зрение и слух – пупырышки этих центров еле возвышаются; ассоциативные, то есть мыслительные, центры развиты слабо, зато обонятельные луковицы велики. Их челюсти были слабы на боковые нагрузки, зубы еле-еле держались в челюстях, так что сопротивляющаяся добыча, тем более крупная, просто переломала бы им весь рот. Ноги не были приспособлены для быстрого бега и маневрирования, так что убежать от них было не так уж сложно, вопреки сцене из «Парка Юрского периода», где тираннозавр без особого труда догоняет машину на скользкой от дождя дороге. По итогу, весь комплекс – подслеповатый, глуховатый и туповатый, медленный и непрочный, зато отлично нюхающий и способный раскусить что угодно, главное, чтоб оно не дрыгалось – скорее типичен для падальщиков, а не активных охотников. Впрочем, надо учитывать, что добыча-то тоже была чрезвычайно медленной, огромной, то есть очень заметной даже издалека, и довольно вялой, так что при таком раскладе тираннозавриды вполне могли быть хищниками. Только вот эпичные битвы с рыком и прыжками, столь любимые мультипликаторами – чистой воды фантазия. Тормознутость битвы тираннозавра и какого-нибудь травоядного динозавра трудно себе представить; для первого приближения можно посмотреть на сражения каймана и анаконды, крокодила и черепахи, ужа и лягушки.

Конечно, всегда стоить помнить, что ископаемые существа – не копии современных, иногда они бывают оригинальны и на первый взгляд противоречивы. Скажем, халикотерии – представители непарнокопытных, имели на пальцах когти, причём раздвоенные. Если бы были найдены только обломки этих когтей, можно было бы подумать, что они принадлежат хищному зверю. Но нет, зубы и все прочие признаки, без всякого сомнения, относят халикотериев к растительноядным. Когти эти странные животные использовали для пригибания ветвей деревьев. Если же вникнуть в детали строения халикотериевых когтей, то не так сложно понять, что они были всё же ближе к копытам. Прямо противоположный пример: мезонихии имели на пальцах копыта, хотя по всем остальным признакам – особенно по строению челюстей и зубов – они, несомненно, относятся к хищникам.

Вывод прост: чем больше данных, тем лучше. Не стоит делать далеко идущих выводов по единичным фрагментарным находкам, на таком не раз попадались даже лучшие умы прошлого, не надо наступать на те же грабли. Благо, сейчас информации у нас просто гигантское количество, и она продолжает поступать невероятными темпами.

«Взятие в скобки». Изучение древнего организма в сравнении с более и менее примитивными формами. Современная наука уже более-менее разобралась с порядком возникновения разных существ, к тому же, что приятно, многие из них имеют современных потомков. Логично предположить, что промежуточные вымершие формы должны иметь промежуточные черты. Например, среди архозавров крокодилы – очень примитивные, отделились от общего ствола текодонтов весьма рано, птицы – самые продвинутые, обособились последними, а динозавры находятся на филогенетическом древе примерно посередине, хотя они и не потомки крокодилов и не факт, что предки птиц. Ещё есть птерозавры, чья ветка ответвляется после крокодилов, но до динозавров. Зная особенности крокодилов и птиц, можно строить гипотезы об особенностях птерозавров и динозавров. Конечно, такой подход должен учитывать, что современные примитивные формы (те же крокодилы) совсем не копии ископаемых прототипов, а имели свою долгую эволюцию; и уж подавно сильно изменились продвинутые группы.

* * *

Тафономия – раздел палеонтологии, изучающий пути образования ископаемых – фоссилий. Термин введён советским палеонтологом И.А. Ефремовым.

Ископаемые достаются учёным в разном виде.

Окаменение (петрификация) и замещение: в этом случае органика разрушается, а вода, содержащая минеральные компоненты, заполняет все полости и поры, где минералы отлагаются, создавая каменистые фоссилии. Понятно, что обычно окаменевают только самые прочные части, например кости, но изредка, при хорошей концентрации минерального раствора, петрифицируются мышцы и даже такие эфемерные части, как язык, нервы и глаза. Иногда по пути окаменевающие элементы заметно деформируются, искажаются и сплющиваются самым причудливым образом. Качество окаменения бывает разным – от слабооформленных чурок, лишь в общих чертах напоминающих исходный объект, до клеточной точности, что позволяет оценить уровень обмена веществ и даже прикинуть размер генетического аппарата. Чрезвычайно ценный вариант окаменелостей – микрофоссилии: одноклеточные водоросли, микроскопические раковинки простейших, споры и пыльца растений. По ним идеальным образом восстанавливаются климатические колебания; по большому счёту, по ним проводятся и границы геологических периодов.

Фоссилизация

1. Мертвое животное опускается на морское дно.

2. Трупоеды и бактерии вскоре очищают его скелет от плоти.

3. Сверху образуется осадочный слой.

4. Растворенные в воде минеральные вещества просачиваются в горную породу и останки животного.

5. Вода вытесняется из породы. Минеральные вещества замещают костное вещество в костях.

6. Миллионы лет спустя горная порода становится сушей. Стихия разрушает её, обнажая скрытые в ней окаменелости.

Замещающие породы тоже бывают разными. Особенно впечатляют окаменелости, выполненные пиритом – выглядят они, как золотые. В Австралии знамениты переливающиеся всеми цветами радуги кости динозавров, замещённые опалом. В канадской Альберте перламутр аммонитов стал аммолитом – зелёно-жёлто-оранжевым минералом невероятной красоты.

Копролиты – окаменевшие экскременты, то есть какашки – не самый привлекательный, но богатый информацией вид фоссилий. По ним можно проследить детали диеты и иногда поведения древних животных. Часто внутри копролитов сохраняются косточки, чешуя и даже окаменевшие шерстинки, а изотопный анализ позволяет уточнить содержание разных типов органики в пище. Угадать, кто же нагадил миллионы лет назад, бывает непросто. Хорошо с акулами: благодаря спиральному клапану в прямой кишке их завитые копролиты крайне характерны. А вот кому принадлежат копролиты в виде звёздочек из пермских отложений Пермской области – до сих пор неизвестно; зато как красиво можно назвать это таинственное существо – «Астрофекалис мирабилис».

Окаменелый скелет динозавра

Обугливание – довольно частый вариант фоссилизации, при котором нестойкие органические компоненты исчезают, но углеродная, то есть углистая составляющая остаётся. Понятно, что чаще и легче это происходит с растениями: в гигантских залежах бурого и каменного угля регулярно встречаются обугленные стволы, корни и листья деревьев.

Отпечатки образуются, когда организм падает на песок или впечатывается в него; последующие отложения покрывают его, так что, когда палеонтолог раскалывает плитку песчаника, получается отпечаток и противоотпечаток. В зависимости от грубости породы разрешение будет разным. Если осадок был очень мелкий, сохраняются детали строения ножек и крыльев насекомых, мельчайшие прожилки листьев растений, семена и чешуя рыб в желудках животных. На отпечатке мезозойской птицы Archaeorhynchus spathula удалось проследить даже тонкости строения лёгких. Различаются и размеры отпечатков: чаще это не очень большие фрагменты тонких объектов, например, бесскелетных организмов, листьев и кожи, но встречаются и огромные отпечатки листьев, целых ихтиозавров, птерозавров, птиц и зверей. Иногда внутри отпечатка консервируются органические вещества, которые, позволяют, например, определить родство эдиакарских загадочных тварей или цвет кожи и перьев мезозойских рептилий и птиц. Самые знаменитые местонахождения самых впечатляющих отпечатков – Золенгофен и Мессель в Германии и Джехол в Китае.

Отпечаток вендского организма

Полости, слепки и ядра получаются, когда остатки живых существ погружаются в полужидкий осадок, после чего органика сгнивает или растворяется, оставляя полости. Эти пустоты могут сохраниться, а могут заполниться новым плотным осадком. Иногда в последующем разрушается уже окружающая порода, так что нам достаются объёмные слепки древних организмов. Обычно это происходит с раковинами и частями деревьев, но известны прецеденты слепков даже носорогов. Особый вариант слепков – эндокраны – отливки мозговой полости, которые могут образовываться сами собой, а при надобности изготавливаются уже самими палеонтологами. К сожалению, эндокраны не отражают всех деталей строения мозга, на них обычно не видно борозд и извилин, но общую форму и пропорции они передают.

Эндокран древнего человека из Гановце

Следы, ходы и норы изучаются особым разделом – ихнологией. Эта область весьма специфична и очень важна, так как позволяет наглядно увидеть поведение древних животных, например, взаимодействие хищников и их добычи. К сожалению, довольно редко можно соотнести следы ног и отпечатки и кости тех, кто их оставил, так что для следов существует отдельная номенклатура – выделяются ихнотаксоны (кстати, такая же ситуация существует с яйцами – их называют своими именами, которые редко прямо увязываются с теми, кто яйца отложил).

Полости в янтаре – один из самых красивых вариантов фоссилизации. В смоле, вытекавшей из деревьев, вязли древние насекомые, пауки, частички растений, ящерицы, перья птиц и прочие мелкие штуки. Смола затвердевала и становилась янтарём, внутри которого все эти чудеса застыли как пустоты с минимумом высохшей органики. Благодаря идеальному обтеканию смолой в янтаре видны наимельчайшие детали строения. К сожалению, надежды на то, чтобы там сохранилась ДНК, как это показано в фильме «Парк Юрского периода», не оправдались.

Битумизация – консервация в естественном парафине, асфальте и озокерите. Самые известные жертвы асфальта – мамонты, смилодоны, волки и гигантские грифы из Ранчо ла Бреа в Калифорнии. Самые впечатляющие находки – куски туш мамонта и шерстистых носорогов из Старуни на Западной Украине. Правда, они же – и самые несчастные: части мамонта и первого носорога были выброшены на свалку, а из шкур незамысловатые добытчики озокерита, принявшие их за волов, пытались шить обувь. Чуть больше повезло второй туше носорога, почти идеальной сохранности, чучело с которой до сих пор хранится в музее, хотя нормального исследования находки так никогда и не было сделано.

Насекомое в янтаре

Замораживание, высушивание (мумификация), засаливание – почти идеальные варианты. Все слышали про замороженных мамонтов из Сибири, на телах которых сохранились мышцы, кожа и шерсть, в коже – личинки оводов, внутри рта и желудка – трава. Как ни странно, единственное, что так и не сохранилось – это клетки. В процессе заморозки кристаллы льда порвали все мембраны, так что до сих пор ни одной целой клетки так и не было найдено. А это важно, так как цитоплазма столь же необходима для клонирования, как и ДНК, которая для мамонтов уже полностью расшифрована. Конечно, замороженными находят не только мамонтов, но и шерстистых носорогов, бизонов, лошадей, росомах, пещерных львят и прочих существ – в настоящее время таких находок сотни. Просто на мамонтов обращают гораздо больше внимания. Кого привлечёт мороженый суслик? А голая амёба, актиномицет или гигантский вирус? А меж тем все они найдены в плейстоценовых льдах. Самые удивительные находки с Колымы – семена растения смолёвки узколистной Silene stenophylla и нематоды Panagrolaimus aff. detritophagus и Plectus aff. parvus; их удалось оживить спустя, соответственно, 31,8 и 41,7 тысяч лет! Замороженные растения и тела животных найдены и на Аляске, хотя в меньшем количестве (соответственно меньшему размеру самой Аляски).

Маленькая тонкость

Всегда возникает вопрос: если найдены мороженые мамонты, то где мороженые люди? Самый известный и самый древний «ледяной человек» из Альп – Этци – жил 5,3 тыс.л.н. Наверняка живущие и работающие в тайге и тундре люди иногда находят и более древние тела, может быть, даже неандертальцев и денисовцев, но, думается, в этом случае их либо хоронят, не разобравшись, либо стараются никому не сообщать, боясь судебного преследования.

Несколько реже встречаются высушенные мумии – такие известны из пустынь Центральной Америки (куски шкур гигантских ленивцев), а также пещер Новой Зеландии (ноги и головы птиц моа). Засаливание идёт параллельно с высушиванием в пустынях Австралии (части тел дипротодонов) и Центральной Азии (человеческие мумии из Тарима в Китае и Чехрабада в Иране). Такие находки имеют совсем небольшой возраст, обычно уже голоценовый. Впрочем, соляным растворам принадлежит и абсолютный рекорд по консервации древних организмов – галофильных архей Halococcus salifodinae из Австрии, существовавших 250 млн л. н.!

Halococcus salifodinae

Фоссилизация может происходить быстро и медленно, но обычно – быстро, так как иначе бактерии успеют разложить органику на неорганические составляющие. Скорость зависит от специфики вмещающих пород и концентрации минеральных веществ в воде. С одной стороны, отдельные белки могут сохраняться миллионы лет, молекулы ДНК выделены из костей Homo heidelbergensis из Сима де лос Уэсос с древностью 427 тыс.л.н. С другой стороны, порой минерализация занимает считанные дни. Например, в московской канализации в XX веке находились окаменевшие тапочки и кошки того же XX века производства, причём окаменевала даже шерсть бедных животных.

Кроме отдельных фоссилий, тафономия изучает и целые захоронения, особенности их формирования и структуру. Для образования палеонтологического местонахождения необходимы четыре этапа. Во-первых, остатки организмов должны сконцентрироваться в каком-то месте; иногда это происходит во время массовой гибели, иногда остатки просто сносятся водой в какую-нибудь заводь или скапливаются в ямах, оврагах, пещерах, даже пнях. Во-вторых, аккумулированные остатки должны быть достаточно быстро захоронены в осадке. В-третьих, должна произойти фоссилизация – превращение в окаменелости. В-четвёртых, уже в современности вышележащие отложения должны быть так или иначе разрушены, чтобы мы могли добраться до окаменелостей. Все эти этапы обязательны и должны сменять друг друга строго последовательно; выпадение хотя бы одного ведёт к нарушению всего цикла. Например, если организмы не будут быстро захоронены в осадке, то они разрушатся; если они не фоссилизуются, то тоже исчезнут без следа; если разрушение отложений произойдёт до фоссилизации, то мы ничего не найдём.

Ясно, что столь счастливое стечение обстоятельств – чтобы и организм попал куда надо, и никто его не съел, и концентрация минеральных веществ в воде была оптимальной, и всё это пролежало до современности и не развалилось, и оказалось в доступном человеку месте, и мы ещё это нашли, да ещё чтоб нашёл не кто-нибудь, а нормальный палеонтолог – всё это крайне маловероятно. 99,99 % организмов без следа разрушаются, а их вещество возвращается в общий круговорот. Отсюда неизбежно вытекает неполнота палеонтологической летописи. Иначе и быть не может, а то бы мы ходили по скелетам, да и из какого такого вещества состоял бы у нас организм, если бы все предыдущие сохранялись?

Так что, как ни прискорбно, палеонтологам никогда не светит найти представителей всех ископаемых организмов. От большинства видов не сохранилось вовсе ничего, от многих – единичные и притом фрагментарные находки. Впрочем, есть и счастливые исключения, когда обнаруживаются просто грандиозные слои древесины, раковин, скелетов, отпечатков и прочих фоссилий. Некоторые даже добываются промышленным способом. Каждый год в печах сгорают миллионы отпечатков в каменном угле. Известняки, из которых построено огромное количество сооружений по всему миру, не что иное, как концентрат фоссилий. В стенах многих зданий и метро не так сложно найти членики морских лилий, а иногда и раковины аммонитов. Даже банальный писчий мел, изводимый в школах тоннами, – прессованные ископаемые, хотя бы и одноклеточные. Но и крупнокалиберные, вполне коллекционные фоссилии бывают бесчисленны: тысячами на продажу добываются мадагаскарские аммониты, марокканские трилобиты, китайские нотозавры и вайомингские рыбки.

Для обозначения разных фаз и вариантов местонахождения придуманы умные слова.

Танатоценоз – скопление мёртвых организмов или их частей. Танатоценозы могут быть автохтонными – захороненными в месте их гибели, или аллохтонными – перемещёнными к месту захоронения.

Тафоценоз – древний танатоценоз, претерпевший захоронение в породе.

Ориктоценоз – совокупность остатков организмов, изучаемая исследователями. Часто этим же словом обозначают просто список определённых таксонов из конкретного местонахождения. Тонкость в том, что часто какая-то часть тафоценоза до поры до времени ускользает от внимания учёных, в последующем же, с применением новых методик и подходов, ориктоценоз может неожиданно увеличиться, даже без дополнительных раскопок. А может и уменьшиться, если дополнительные исследования покажут, что множество ранее выделявшихся видов на самом деле представляют собой одно и то же. Такое происходит сплошь и рядом.

Геохронологическая, или стратиграфическая шкала – великое расписание времён, последовательность эпох от появления Земли до современности. Всё время существования планеты для удобства делится на отрезки, внутри разделённые на более дробные подразделения.

Маленькая тонкость

Почти любой отрезок делится на «нижний», «средний» и «верхний» или «ранний», «средний» и «поздний». Тонкость заключается в том, что «нижний – верхний» относится к стратиграфии, геологическому расположению в ненарушенных отложениях, а «ранний – поздний» – ко времени. Обычно слова «нижний – ранний» и «верхний – поздний» используются как синонимы, но разницу лучше в уме держать. Аналогично отличаются пары понятий «эратема – эра», «система – период», «отдел – эпоха» и «ярус – век»: первые термины в парах относятся к геологии, вторые – к хронологии. В ярусе окаменелости залегают, в веке существа жили.

Акротемы, или акроны – самые длинные отрезки, выделяющиеся далеко не всегда, актуальные лишь для дремучих докембрийских времён, где их обычно насчитывают два-три: гадей (катархей), архей и протерозой; иногда они не отличаются от эонов.

Эонотемы, или эоны – тоже грандиозные этапы. Иногда их выделяют всего два – докембрий и фанерозой. Впрочем, подразделения докембрия – гадей, архей и протерозой – тоже порой считаются эонами, а иногда за таковые идут внутренние подразделения архея и протерозоя (если их считать акронами) – ранне- и позднеархейский, а также ранне- и позднепротерозойский.

Эратемы, или эры – гораздо более стабильное понятие. Правда, для докембрия по-прежнему есть разнобой в разных схемах, но внутри фанерозоя всеми выделяется три эры – палеозойская, мезозойская и кайнозойская.

Системы, или периоды – самые ходовые отрезки с наибольшей стабильностью в разных схемах. Иногда внутри них выделяются ещё и подсистемы, но тут согласия меньше. Внутри палеозоя шесть периодов: кембрийский, ордовикский, силурийский, девонский, каменноугольный (карбоновый) и пермский. В мезозое три периода: триасовый, юрский и меловой. В кайнозое тоже три: палеогеновый, неогеновый и четвертичный (антропогеновый).

Отделы, или эпохи – ещё более мелкие и на практике не всегда хорошо определимые отрезки. Большинство периодов разделяются на нижнюю, среднюю и верхнюю эпохи; у некоторых нет средней, у некоторых названия оригинальнее; кайнозойские иногда дополнительно делятся на подотделы.

Ярусы, или века – самое мелкое подразделение, длиной от двух – пяти до десяти миллионов лет, редко больше. К тому же они иногда подразделяются на подъярусы, значимые, правда, уже только для региональных шкал. Теоретически ярусы должны быть самыми актуальными измерителями времени, но в реальной работе далеко не всегда возможно установить, к какому ярусу относится конкретный слой или, подавно, отдельная окаменелость. Особенно обидно, что часто возникают сложности соотнесения ярусов, установленных в разных странах по разным критериям.

Всегда важно помнить, что все указанные подразделения в любом случае условны. Лучшее тому доказательство – сравнение хронологической протяжённости разных отрезков: чем период древнее, тем он в среднем длиннее. Например, кембрийский и юрский периоды тянулись по 56 миллионов лет, девонский и карбоновый – по 60, меловой – 79, а эдиакарский и вовсе 94! В то же время вся кайнозойская эра заняла 66 миллионов лет, а четвертичный период длится каких-то несчастных 2,58 миллиона – меньше большинства ярусов. Такая несуразица выросла из двух корней.

Во-первых, границы этапов часто имеют скорее историческую ценность. Геологи XIX века исследовали конкретные местонахождения, описывали их фауну, сравнивали и пытались расположить слои в закономерном порядке. С тех времён сохранились много странных названий, например «четвертичный период». Дело в том, что в некоторый момент история Земли делилась на четыре периода: первичному более-менее соответствует палеозойская эра, вторичному – мезозойская, третичному – первая половина кайнозоя, а четвертичному – антропоген. Первые три названия поменялись (хотя третичный иногда и поминают по старинке), а последнее упорно держится в стратиграфических шкалах, хотя антропологам, понятно, больше нравится новое название. Ясно, что геологи прошлого имели крайне смутное представление о протяжённости выделяемых этапов, считалось, что они укладываются в несколько тысяч или от силы сотен тысяч лет. Ни о какой эквидистантности – равной нарезке по времени – речи не шло.

Вторая причина – неодинаковая осведомлённость учёных о разных эпохах. Очевидно, что про более отдалённые времена известно гораздо меньше, про близкие к нам – больше. Разрешающая способность методов сильно неодинаковая. Разобраться, к какому конкретно отрезку, например, девона или силура относятся отложения, бывает очень непросто, тогда как для неогена и антропогена у нас есть огромное количество надёжных маркёров. Да и просто самих отложений более поздних времён несравнимо больше. Отсюда вырастает «логарифмическое мышление»: недавним событиям придаётся больше значения, а древние сливаются в неразборчивую серую массу. Другое следствие – представление об ускорении эволюции при приближении к современности. Детали событий старины глубокой ускользают, потребности тогдашней жизни могут быть совершенно нам непонятны, тогда как мельчайшие события вчерашнего дня приобретают глубокий смысл и вселенскую важность. Кажется, что в палеозое сотни миллионов лет вяло суетились одинаковые трилобиты и росли одинаковые кораллы, а вот в последние-то сто тысяч лет вон сколько видов млекопитающих поменялось! А то, что трилобиты внутри себя и кораллы друг от друга отличаются порой гораздо больше, чем самые несхожие млекопитающие, понятно только специалистам по трилобитам и кораллам.

Важно понимать и сам принцип проведения границ между эпохами. В подавляющем большинстве случаев это делается по руководящим ископаемым – характерным для разных периодов живым организмам. Чаще всего в качестве таких руководящих выступает какаянибудь многочисленная и быстро эволюционирующая мелочь типа фораминифер, радиолярий, трилобитов, брахиопод, аммонитов, двустворок, граптолитов, конодонтов и спор растений. Например, в касимовском ярусе карбона обнаруживается комплекс аммонитов Dunbarites-Parashumardites, а в гжельском – Shumardites-Vidrioceras; роудский ярус перми содержит зубчики конодонтов Jinogondolella nankingensis, а последующий вордский – Jinogondolella aserrata. Смена родов и видов морских животных чутко отражает изменения температуры воды, иногда её микроэлементного состава, освещённости и прочих показателей среды. Наземная флора и фауна обычно более стабильны, да и материалов по ним меньше, так что они гораздо реже выступают в роли руководящих ископаемых.

В идеале выбираются такие руководящие ископаемые, по которым есть богатые данные о промежуточных предшествующих формах, то есть те, время появления которых гарантировано (привет креационистам, вещающим об отсутствии переходных форм). Определяется только нижняя граница хронологического этапа, то есть время появления нового комплекса организмов (только начало олигоцена маркировано вымиранием фораминифер Hantkeninidae), так как в последующем отдельные виды могут вымереть и не дожить до конца эпохи, а другие, напротив, пережить её и продолжиться в следующей. Это же значит, что важнее присутствие руководящего ископаемого, чем отсутствие: если уж кто-то возник в определённое время, его не найти в более древних слоях; кроме того, руководящие ископаемые просто могут не сохраниться в этом конкретном слое, или мы их пока не нашли. Впрочем, ясно, что нижняя граница одного отрезка автоматически означает верхнюю для следующего.

Поскольку границы проводятся по появлению фауны, то не стоит удивляться, что почти каждый период заканчивался вымиранием. Многим это представляется просто каким-то проклятием: «Да что ж такое?! Только кончится период, как все вымирают!» На самом деле, логика проста: возникновение новых групп обычно вызвано сменой условий, да к тому же новичкам необходимы свободные экологические ниши, а освобождение таковых обычно происходит из-за вымирания, которое, конечно, вызвано той самой сменой условий.

Понятно, что живых существ сонмы, эволюционировали они не слишком синхронно, на чьи проблемы надо обращать больше внимания – вопрос философский. Проводились даже эксперименты, когда одни и те же образцы, скажем, границы мезозоя и кайнозоя, предоставлялись разным исследователям для анализа. Результат был забавен: учёные, обращая внимание на разные окаменелости, проводили границу эр в разных местах стратиграфической колонки. Конечно, разница была не слишком принципиальная, но всё же расхождение на сотни тысяч и даже миллионы лет не так уж мало. А речь, между прочим, про то самое знаменитое позднемеловое вымирание, когда на планете исчезли динозавры, якобы из-за падения астероида.

Ясно, что в разных частях планеты фауна могла меняться неодновременно, руководящее ископаемое могло возникнуть в одном месте, а спустя миллионы лет мигрировать в другое, ставя под сомнение наши представления о синхронности отложений. Поэтому в настоящее время всё большее внимание уделяется физическим методам – палеомагнитным, хемостратиграфическим и палеоклиматическим.

Те же причины виной расхождению международной и региональных стратиграфических шкал. Планета велика, изменения климата сказывались в разных местах неодновременно и сильно неодинаково, флоры и фауны в разных местах не совпадают, так как в одних регионах могли вымирать, а в других – ещё долго сохраняться. Например, нижняя граница касимовского яруса по международной шкале проводится в основном по смене фораминифер и конодонтов, а в российской ещё и по аммонитам, отчего граница смещается в древность. Роудский ярус международной шкалы в российской называется казанским, а вордский – уржумским, причём в международном варианте выделяется по конодонтам, а в российском – по остракодам и конодонтам, но уже другим; дело ещё и в том, что международная шкала основана на морских отложениях, а в России для пермского периода преобладают континентальные.

Иногда целые ярусы кочуют из эпохи в эпоху: такое происходило, например, с датским, который из позднего мела отправился в палеоцен, приабонским, который из олигоцена уехал в эоцен, гелазским, который из плиоцена перекочевал в плейстоцен.

Иногда сказываются и патриотические настроения геологов и палеонтологов. Так, кептенский ярус международной шкалы у нас зовётся северодвинским, вучанский – вятским, гваделупская эпоха – биармийской, а лопинская – татарской. В США своя гордость: американские учёные упорно разделяют классический каменноугольный период на миссисипский и пенсильванский (обидно же, что почти все названия шкалы были даны в XIX веке по европейским областям с типовыми местонахождениями, и более того – о ужас! – российским, а Америка опоздала на раздачу красивых наименований). Долгое время во всём мире это игнорировалось, пока в 2000 году американские геологи не пропихнули миссисипий и пенсильваний в международную шкалу в качестве хотя бы подсистем. Совсем отдельная таксономия сложилась в Южной Америке – как в силу геологической и палеонтологической специфики, так и длительной изоляции местных учёных.

Особенно серьёзны расхождения международной и региональных шкал в части подразделения докембрия. Его неустаканенность вызвана малым количеством хороших местонахождений, крайней редкостью и спорностью ископаемых, да и немногочисленностью заинтересованных исследователей. Даже на уровне выделения эонов и эр тут до сих пор, как уже упоминалось, царит полный бардак. Международная шкала докембрия имеет более удобную и унифицированную номенклатуру, чем российская, но границы проведены гораздо формальнее – время просто нарезано на более-менее равные отрезки. Российская выглядит несколько кособокой (рифейский эон является частью позднепротерозойского эона, что само по себе странно; он делится на три эры без периодов и эпох, тогда как остаток позднего протерозоя – вендский период – не относится ни к какой эре, но делится на две эпохи), зато границы в ней гораздо более обоснованы стратиграфически, так как в нашей огромной стране полно отличных и прекрасно изученных разрезов. Китайцам же, понятно, больше нравятся термины «синийский период» и «синийская эра», хотя их границы достаточно неопределённы.

Всё же учёные разных стран пытаются договориться между собой. Созываются международные геологические конгрессы и симпозиумы, собираются комиссии, издаются решения. Ясно, что «международность» – понятие относительное, решения принимают конкретные люди, имевшие опыт исследования конкретных разрезов и специализирующиеся на конкретных группах организмов, но главное – работа идёт. Для взаимопонимания необходимо согласие и сотрудничество; важно, что палеонтологи стремятся к этому.

В нашей книге речь пойдёт про всю планету, так что повествование будет построено на основе международной шкалы.

Немало сложностей вызывает датирование границ эпох. Для некоторых моментов эти цифры определены достаточно точно, а некоторые находятся под сомнением. Например, до сих пор нет внятной границы между юрой и мелом, хотя, казалось бы, как такое может быть – самые известные периоды и до сих пор не разграничены?! В любом случае важно отметить, что датировки расставляются от нашего времени. Классической ошибкой неспециалистов является автоматическое добавление к дате присказки «до нашей эры». «Наша эра» началась чуть больше двух тысяч лет назад (посмотрите на календарь), но в масштабах десятков и сотен миллионов эта пара тысяч – вообще ни о чём, гораздо меньше погрешности методики определения возраста.

* * *

Дрейф материков – мощнейший процесс, во все времена влиявший на эволюцию жизни на Земле. Сходство очертаний краёв Африки и Южной Америки замечали давно – ещё А. Гумбольдт и Е.В. Быханов, но эти мысли долго не получали развития. Лишь в начале XX века идею поднял А.Л. Вегенер, а чуть позже довёл до ума А. Холмс. В доказательстве реальности материкового дрейфа палеонтология сыграла немалую роль. Древние животные Южной Америки, Африки и Индии оказались необычайно схожи, несмотря на современное разделение этих областей. Более того, такие же чуть позже нашлись и в Австралии и даже в Антарктиде. Да и современные фауны южного полушария имеют ряд явно неслучайных соответствий. В северном полушарии есть свои сходства. За географией и биологией подтянулась и геология, так что в настоящее время известны не только последовательность и направления схождений-расхождений, но даже скорость движения материков.

Кора планеты состоит из множества отдельных литосферных плит, которые вплотную притёрты друг к другу, но скользят по полурасплавленной магме мантии, которая, оставаясь как бы твёрдой, конвектирует: нагреваясь в глубинах, поднимается, остывает и вновь опускается, приводя в движение исполинские массы породы. Иногда литосферные плиты подныривают под соседние или, напротив, наползают сверху, проваливаются в магму, расплавляясь, или вздымаются к небесам грандиозными горными хребтами. На линии стыков недра могут сотрясаться землетрясениями и прорываться линиями вулканов, а в центральных областях плит сотни миллионов лет царит мир и покой. Понятно, что процесс этот крайне медленный, но и Земля существует четыре с половиной миллиарда лет, так что времени на самые разные комбинации хватало.

География менялась не только из-за движения земной коры. Вслед за солнечными и планетарными пертурбациями температура планеты колебалась, а вслед за этим закономерно увеличивалось или уменьшалось количество воды, свободной и скованной льдами. Уровень мирового океана гулял, огромные площади прибрежных низин то затапливались, то высвобождались из-под волн. Перенаправлялись течения и ветры, влажность внутренних областей росла и падала, а живые организмы добавляли преобразований, формируя, разрушая и закрепляя геологические породы, что вело к усилению или ослаблению поступления микроэлементов в океан, отчего фито- и зоопланктон преображался и влиял на атмосферу.

И вот на этом грандиозном фоне жили и развивались наши предки, каждый раз отчаянно пытаясь не вымереть и обскакать конкурентов. И всё это – наша история, всё это изучает палеонтология.

Статиграфическая шкала

Часть I

Докембрий: ночь, рассвет

Гадей, или Катархей

4,6–4,0 миллиарда лет назад: Появление жизни

Гадей – первые полмиллиарда лет существования планеты, от которых до нас дошли только эфемерные флюиды. Свежая Земля не была похожа на ту планету, к виду которой мы привыкли: сутки по 10 часов, огромная кривая Луна на небе, ядовитая атмосфера и совсем иные горные породы. Тем не менее, именно условия молодой Земли задали все наши особенности, химический состав наших тел, потребности и границы возможностей.

* * *

Первые этапы существования планеты покрыты непроглядным астрономическим мраком. В нашей Солнечной системе нет формирующихся планет, а про инозвёздные мы пока знаем слишком мало. Общая космология гласит, что для нашего появления необходимо бытие первых звёзд, образование в недрах красных гигантов тяжёлых элементов, взрывы сверхновых и разлёт элементов по Вселенной, собирание их в новые туманности, звёзды и планетезимали, формирование протопланетных дисков и слипание разрозненных ошмётков в планеты. Нашей Солнечной системе повезло: само Солнце не слишком холодное и не слишком горячее, а огромные планеты-гиганты на периферии защищают своей гравитацией внутренние области от астероидов и комет. Даже катастрофы были нам на пользу. Столкновение только что остывшей Протоземли с каким-то небесным телом размером с Марс оторвало огромный кусок, отлетевший в сторону и ставший Луной, которая с тех пор стала нашей дополнительной защитницей от астероидов. От удара ось Земли перекосилась, что стало залогом смены времён года. Вулканическая активность создала атмосферу, а вода из падающих комет и выделяющийся из мантии планеты водяной пар сконцентрировались в океанах.

Но это всё широкие мазки. Детали картины ускользают, ведь горные породы, из которых была сложена Первоземля, давно успели погрузиться в магму, расплавиться и преобразиться, снова застыв. За колоссальный срок даже элементный состав разных слоёв планеты успел поменяться. Нам только кажется, что планета твёрдая: в масштабе миллиардов лет она вполне жидкая. Тяжёлые элементы помаленьку погружаются в недра, а лёгкие, будучи вытеснены по закону Архимеда, всплывают наверх; самые лёгкие – свободный водород и инертные газы – не могут быть удержаны слабой гравитацией Земли и улетают в космос, в то же время космическая пыль притягивается и оседает на поверхность планеты. Древнейшие известные земные частицы – кристаллы циркона из Австралии с датировкой 4,404 миллиарда лет назад. Хитрые подсчёты возраста самых старых метеоритов показывают, что Земля сформировалась 4,567, 4,55 или 4,54 млрд л. н., то есть первые 150 миллионов лет напрочь выпадают из нашего знания. А ведь это – временной отрезок как от конца юрского периода до современности!

Тем не менее, что-то мы всё-таки знаем.

Судя по нынешним планетам-гигантам, первичная атмосфера Земли содержала много метана и аммиака, поменьше сероводорода, углекислого газа, простейших углеводородов и водяных паров. Кислород, выделявшийся из мантии в процессе дегазации и из воды фотодиссоциацией под действием ультрафиолета, тоже не задерживался, но не улетучивался и не скапливался, а окислял всё, что могло быть окислено.

В таких чудесных условиях и возникла жизнь.

Возникновение жизни из неорганических составляющих называется абиогенезом. В школе поныне проходят абиогенез на примере теории А.И. Опарина – Дж. Холдейна: согласно ей, жизнь самозародилась в «первобытном бульоне» в виде коацерватных капель, на которые воздействовали электрические разряды и ионизирующее излучение. Многочисленные эксперименты показали, что, действительно, в смеси, более-менее соответствующей первичной атмосфере и воде Земли, если стучать туда током или облучать ультрафиолетом, сами собой возникают аминокислоты и нуклеотиды, а если добавить немного серы (которая на Первоземле выкидывалась вулканами), то органика собирается в достаточно длинные цепочки.

Современные представления о происхождении жизни гораздо более сложны. Мы не полезем в эти дебри, тем более, что это уже сделано гораздо лучшими специалистами: все желающие могут прочитать чудесные книги Е.В. Кунина «Логика случая. О природе и происхождении биологической эволюции» (2014 г.) и М.А. Никитина «Происхождение жизни. От туманности до клетки» (2016 г.). Отметим только отрадный факт: все ключевые моменты возникновения живого из неживого уже расшифрованы и по частям воспроизведены в лабораториях. Правда, с нуля до целой клетки пока никто из экспериментаторов не дошёл, но и времени у исследователей было не так много, тогда как в оригинале на это ушли сотни миллионов лет.

Сейчас первые этапы преджизни называются «РНКовым миром», так как первыми действительно важными органическими молекулами были именно цепочки РНК. Аминокислоты тоже существенны, но астрономы обнаруживают их по спектрам даже в межзвёздных облаках. Кстати, тут кроется вечная ошибка неспециалистов: многим кажется, что органические вещества обязательно должны быть результатом жизнедеятельности организмов. Нет! Органические вещества – это соединения углерода обычно с водородом и частым включением также кислорода, фосфора, серы и прочих элементов. Это просто сложная химия, которая вполне может существовать сама по себе вне всякой связи с жизнью. И вот один из пиков этой сложности – молекулы РНК – стал основой жизни.

Важное свойство РНК – способность катализировать реакции. Это сейчас РНК известна больше как переносчик генетической информации, первоначально же не было никакой информации, были просто спонтанно образовывавшиеся молекулы, которые по-разному взаимодействовали. Вариантов РНК было множество, их и сейчас известны десятки. Неустойчивые комплексы разваливались, и мы про них ничего не знаем. Устойчивые же сохранялись, а в силу способности РНК слипаться с аминокислотами и катализировать друг друга увеличивались в числе и сложности. Это называется молекулярной эволюцией.

Замечательное свойство РНК – её большой размер и сложность. К тому же это полимер, который может иметь неопределённо большую длину, складываясь из нескольких типов стандартных кирпичиков – нуклеотидов (аденин, урацил, гуанин и цитозин). С одной стороны, это некоторым образом гарантирует её устойчивость и даёт много биохимических возможностей взаимодействия с белками, с другой – приводит к почти бесконечной изменчивости. А изменчивость – принципиальное отличие жизни от нежизни. Например, минералы тоже имеют много признаков жизни: они обмениваются веществом с окружающей средой, поглощают что-то извне, растут, размножаются. Но у них слишком малая изменчивость: кристаллическая решётка, какая бы хитрая она ни была, всегда воспроизводится по единому стандарту. Конечно, если кристалл в процессе роста натыкается на препятствие или включает в себя что-то инородное, он может изогнуться и искривиться, но принципиально решётка остаётся прежней. Правда, у минералов есть своя эволюция, связанная с упомянутой выше изменчивостью состава земной коры. В древности формировались одни минералы, потом возникали другие, сейчас такие уже не образуются, но появились иные. Однако всё это происходит чересчур медленно и пассивно, чтобы называться жизнью, вариантов очень мало, при одинаковых условиях происходят одни и те же реакции. Другое дело РНК: она имеет оптимальный баланс устойчивости и изменчивости, чтобы молекулярная эволюция поспевала за изменениями среды, в том числе вызванными реакциями, катализируемыми самой РНК.

РНК в итоге стала наследственным аппаратом, то есть хранителем информации, а белки – основой цитоплазмы, то есть главным веществом; а наследственный аппарат и цитоплазма – две из трёх главных основных составляющих живой клетки. Отсюда вырастают два определения жизни: «способ воспроизведения нуклеиновых кислот» и «форма существования белковых тел».

Однако самое ёмкое и всеобъемлющее определение жизни: автокаталитическая система высокомолекулярных соединений углерода в неравновесных условиях.

Одно из важнейших условий среды, в которой появилась жизнь – нестабильность. Была бы среда постоянна, ничего бы там не возникало, всё лежало бы, застывши навеки. Из состава современных организмов, их потребностей и сравнения существ разной степени продвинутости можно примерно прикинуть микроэлементный состав, температуру, кислотность и прочие показатели места, где возникла жизнь.

Вариантов не так уж мало. Это могла быть «маленькая тёплая лужица» (о которой писал ещё Ч. Дарвин в 1871 г.), глубоководная впадина около вулкана, «чёрный» (с сульфидами, в том числе с железом) или «белый» (с окислами кремния, минералами бария и кальция, сульфатами и карбонатами) «курильщик», щелочной источник с микрополостями с полупроницаемыми стенками в минеральных постройках, алюмосиликатная глина, грязевой вулкан, гейзер, фумарола. Каждая из версий имеет слабые и сильные стороны, у каждой есть сторонники и противники. Например, версия с океаном хороша химически, но есть сомнения, существовали ли тогда уже океаны? Версии с грязевыми вулканами и гейзерами хорошо согласуются с данными о самых примитивных бактериях и археях, но возникает вопрос: как они могли противостоять мощнейшей радиации, которой тогда подвергалась планета без магнитного поля и озонового слоя? Вариант с глиной хорошо решает проблему закрепления неустойчивых комплексов, но откуда тогда такая зависимость жизни от воды? Впрочем, все эти проблемы принципиально решаемы. Самое смешное, что учёные придумали уже так много способов появления жизни, что становится совсем не странным, что она таки возникла каким-то одним из них.

Один из важнейших этапов появления клетки – обретение мембраны. Возможно, изначально комплексы РНК и белков ютились в микрополостях минералов и лишь потом обрёли липидную оболочку. Не исключено, что мембраны были изобретены вообще вирусами – паразитами, неизбежно появившимися сразу после возникновения надёжных репликаторов, то есть комплексов, способных самовоспроизводиться. С другой стороны, возможно, А.И. Опарин был не так уж далёк от истины и органические молекулы с самого начала варились в коацерватных каплях.

Мембрана – последняя из трёх принципиальных частей клетки, создающая градиент концентрации между внутренним содержимым и внешней средой. Она обеспечивает запас потенциальной энергии: сначала клетка с затратой энергии закачивает что-то внутрь или выкачивает наружу против градиента концентрации, тем самым создавая напряжение, а потом, когда нужно, в мембране открываются каналы, вещество со страшной силой устремляется по градиенту концентрации, высвобождая кинетическую энергию, которая может быть использована на мирные цели. Если же концентрация веществ по обе стороны мембраны полностью сравняется, движение прекратится, наступит термодинамическое равновесие, тишь да благодать – клетка умрёт.

Продолжение книги