Извлеченные скрытые знания: когнитивные модели бесплатное чтение

© Сапаргали Жанатауов, 2024

ISBN 978-5-0062-7270-5

Создано в интеллектуальной издательской системе Ridero

Глава 5. КОГНИТИВНЫЕ ФАКТОРЫ, ПРОВОЦИРУЮЩИЕ ПОЯВЛЕНИЕ ОШИБОК В УПРАВЛЕНИИ КОМАНДОЙ

Введение

Эффект социальной лени (эффект Рингельмана) – это склонность к снижению личной продуктивности отдельных членов группы при увеличении ее численности. создателя Максими лиана Рингельмана, инженера-агронома из Франции, который занимался научными испытаниями и созданием сельскохозяйственной техники. Он интересовался активностью лошадей и быков, проводил с ними различные эксперименты, целью которых было выяснить, сколько тягловых животных понадобится, чтобы сдвинуть с места конкретный предмет. Позже он понял, что его наблюдения за животными можно сравнить с командной работой. Первый эксперимент в области изучения эффекта социальной лени с участием людей был проведен в 1913 году. Один из них был связан с перетягиванием каната мужчинами. Сначала они тянули веревку индивидуально, потом небольшими группами по 7 и 14 человек. Все этапы испытания длились не более 5 секунд.

«В результате таких экспериментов была выявлена формула Рингельмана, которая помогает определить индивидуальный вклад каждого участника в коллективную работу: С= (100 -7) / (К-1), где С – средний индивидуальный вклад участников, К – количество членов группы. Никакие социальные техноло гии пока не позволили преодолеть эффект Рингельмана. Критикуют эффект Рингельмана пропагандисты «гуру командной работы», но невозможно опровергнуть факт: «чем больше группа, тем большую пассивность свойственно проявлять человеку».

Мы называем эффект Рингельмана – явление социальной лени» Рингельмана, ибо он подтверждался во многих экспериментах с разной ситуационной архитектурой. Например, верен вывод: «этот эксперимент еще раз доказал, что на «массовое» поведение влияют определенные факторы: в сложных ситуациях люди оценивают действия ближнего и ищут пример, как необходимо поступить, а при отсутствии руководителя вовсе решают снять с себя ответственность за произошедшее, надеясь, что жертве поможет кто-то другой». Пока выявлена 2-ая формула для эффекта социальной лени»: Дерек Джон де Солла Прайс, британско-американский историк науки, изучив результаты проведенных экспериментов, выявил закон, который определяет, на каком уровне находится социальная лень: квадратный корень из общего числа работников организации отвечает ровно за половину работы. Мы разработаем модель найдем 3 формулы для явления социальной лени» [5]. Каждая формула является следствием смысловой формулы, равной решению многомерного смыслового уравнения с семантическими переменными.

Факторы, которые провоцируют появление ошибок в управлении командой: y-факторы которые способствуют появлению эффекта Рингельмана (эффект социальной лени). Результат не превосходит сумму отдельных резуль татов членов группы). «Появление коллективных бездельников» возглавляемого ленивым руководителем (далее в модели: соцлен-руководителем). Этот термин входит в тему «социальная лень» и имеет локальное применение, он ни в коем случае не применим к настоящим руководителям. Для сотрудников группы, возглавлямой соцлен-руководителем Рингельман разработал 6 показателей:

1 Увеличение численности группы: чем больше людей в команде, тем больше усиливается уверенность в том, что твою работу может сделать кто-нибудь другой.

2 Отсутствие оценки работы другими: когда сотрудник трудится в одиночку, он боится мнения окружающих, поэтому возникает социальная фасилитация – эффект, при котором работник выполняет свои задачи значительно лучше, когда знает, что за ним наблюдают. В коллективной работе проще «потеряться» и остаться незамеченным, отсюда возникает социальная лень.

3 Исключение личной ответственности: коллективная работа подразумевает, что за ее итоги будут отвечать все, а значит, уровень индивидуальной ответственности каждого снижается, а у кого-то пропадает вовсе.

4 Гендерная структура группы: ученые доказали, что женщины меньше подвержены социальной лени, чем мужчины, при этом дружба внутри команды и сплоченность минимизируют риск появления эффекта Рингельмана.

5 Культурная принадлежность группы: там, где преобладает коллективистская культура, социальная лень проявляется меньше, чем в группах с индивидуалистической культурой. Об этом свидетельствует эксперимент Кристофера П. Эрли, описанный ранее.

6 Часто сам руководитель делает серьезные ошибки в управлении командой, которые провоцируют появление коллективных бездельников.

Основные y-факторы (влияющие на то, что «результат работы всей группы не превосходит сумму отдельных результатов членов группы»):

1 Не обращает внимания на нарушение трудовых обязанностей подчиненными: сотрудник понимает, что ему ничего не будет, если он вдруг по каким-то причинам не выполнит поставленные задачи, поэтому можно «затеряться в толпе», выполняя коллективное задание.

2 Предоставляет дополнительные бонусы сотрудни ку заранее: «Давай я тебя переведу в тот отдел, который ты хочешь, но ты мне обещаешь, что выполнишь эти показатели». Зачем выполнять то, за что ты уже получил награду?

3 Постоянно идет навстречу тем, кто часто отпрашивается, просит какие-либо послабления в режиме работы и т.д.: такой подход часто приводит к тому, что сотрудники забывают о своих трудовых обязанностях и используют рабочее время в личных целях.

4 Заводит себе любимчиков в коллективе: в таком случае есть риск, что остальные сотрудники перестанут стараться и будут разными способами пытаться насолить фавориту руководителя.

5 Не выстраивает четкую коммуникацию между собой и сотрудниками и внутри коллектива: это является причиной неверной постановки задач, отсутствия обратной связи о проделанной работе и каких-либо индивидуальных обсуждений рабочего процесса с сотрудниками.

6 Сами работники не взаимодействуют между собой при выполнении коллективного задания, что разрушает общность и командный дух.

§5.1 Исходные данные

Исходными данными является словесная модель и 13 исходных значений сил влияния ckj=corr (yj, zk),kÎ {1,…,6}, jÎ {1,…,6} (18 индикаторов наличия знаний). Словесная модель может быть сформулирована по-разному. Мозаика {ckj} из элементов будущей матрицы задается экспертом в соответствии со смыслами и силами парной связи ckj=corr (yj, zk) нижеперечисленных 12 смыслв. Словесная модель имеет зависимые по смыслам показатели. сформулированные ниже 6 неизмеряемых 6 показателей приняли приводимые ниже 6 смысли после осмысления 2-х вариантов реализации когнитивной модели ложного соавторства без когнитивного диссонанса конструируе мых фразИсходной информацией для модели являются смысли 6 y-факторов, характеризующих соцлен- руководите ля, которые способствуют появлению эффекта Рингельмана и 6 z-факторов, характеризующих сотрудников группы (Таблица 5.1).

Таблица 5.1. Исходные значения парных связей

(18 индикаторов наличия знаний)

Рис.0 Извлеченные скрытые знания: когнитивные модели

§5.2 Применяемая система многосмысловых уравнений

Многосмысловое уравнение конструи руется из многомерной математической модели, где уже введены числовые параметры, переменные, функции связи, соответствующие реальным свойствам реальных многомерных объектов разных типов. Тип объектов, их свойств отражается в смыслах свойств объектов. Суммы смыслов свойств (z-переменных) объекта могут образовать новый смысл (y-переменную) или нет. В многомерной математической модели переменные делятся на 2 вида: z-переменные с известными именами-смыслами смысл (z1),…, смысл (zn) и y-переменные с неизвестными именами-смыслами смысл (y1),…,смысл (yn). Количество n переменных равно количеству дисперсий disp (y1) =l1, disp (y2) =l2,,…, disp (yn) =ln. В соответствии с значениями l1, l2,…,ln, взятыми из пары смоделиро ванных матриц (C6666) проставляются числовые параметры с11,…,с66 в n уравне ния системы многосмысловых уравнений: смысл (y1) =смысл (z1) *c11Åсмысл (z2) *c21Å смысл (z3) *c31Åсмысл (z4)) *c41Åсмысл (z5) *c51Åсмысл (z6) *c61,…смысл (y6) = смысл (z1) *c13Åсмысл (z2) *c23Åсмысл (z3) *c33Åсмысл (z4)) *c43Åсмысл (z5) *c53Åсмысл (z6) *c63. После удаления слагаемых с «весами» cij, величины которых не удовлетворяют критерию быть индикатором скрытых знаний, количество слагаемых в уравнениях с неизвестными новыми смыслами смысл (y1), смысл (y2), смысл (y6) сократится. И систма многосмысловых уравнений будет содержать меньшее число известных z-смыслов. Более «короткие» суммы смыслов легче осмысливать для конструирования 6 фраз для 6 новых смыслов (новых семанти ческих y-переменных) новый_смысл (y1), новый_смысл (y2), новый_смысл (y6), сущес твенно дополняющих исходные смысли (исходные семантические переменные) смысл (y1), смысл (y2), смысл (y3), смысл (y4), смысл (y5), смысл (y6). Метод смыслового преобразования исходных семантических переменных в новые семантические переменные называется когнитивной моделью ложного соавторства.

Требуемые фразы, отражающие смысли неизвестных 6 смыслов y-переменных, можно сконструировать, если смоделировать:

а) пару матриц собственной структуры (Λ6666), где C66 – матрица псевдособственных векторов,

C66Cт=I66,Cт66C66=¹I6666=diag1,…λn),tr (Λ66) =λ1+…+λn=n,λ1≥…≥λn≥0 tr (Λnn) =λ1+…+λn=n,λ1≥…≥λn≥0.

б) матрицы значений некоррелированных измен чивостей Ymn, коррелированных изменчивостей (отклонений от 0) Zmn, соответствующих своим системам многосмысловых уравнений с известными и неизвестными семантическими (смысловыми) переменными.

Иное название [25] элементов матрицы С66 введено в статьях [25—28], оно отражает смысл «весов», моделируемых в нашей модели, Новые моделируемые 2 матрицы в нашей модели должны обладать свойствами: ортонормировая матрица Cnn собственных векто ров сj= (с1j2jсnj) Т, расположенных по столбцам матрицы Сnn= [с12|…|сn] согласована со своим спектром Λnn корреляционной матрицы Rnn= (1/m) ZTmnZmn, Λnn=diag1,…λn) таким образом, что выполняются равенства RnnCnn=CnnΛnn, CтC¹Inn, C=Inn, diag (Rnn) = (1,…,1), tr (Rnn) =1+1+ …+1=tr (Λnn) =λ1+…+λn=n, λ1≥…≥ λn≥0. В решаемой ниже Оптимизационной Задаче: (I66,I66) => (C66, Λ66), (другие методы смотрите в [25—30]) целевая функция λ1+…+λn равна 6 при изменяемых значениях элементов 2-х матриц C66, Λ66, а ограничения: diag (Rnn) = (1,…,1), CтC¹I66, C66Cт66=I66, Матрицы Um6 и Ym6 такие, что (1/m) UTm6Um6=I66, Ym6=Um6Λ1/266, Zm6=Ym6Cт66, в матрице Ym6 элементы j—го столбца y1j,y2j,…,ymj (j-ая y-переменная, j=1,…,6) имеют среднее арифмети ческое, равное нулю: (1/m) (y1j+y2j+ …+ymj) =0, и дисперсию равную λj: (1/m) (y21j+y22j+…+y2mj) =λj, сумма дисперсий равна n: λ1+…+λn=6. Матрицы Ym6=Um6Λ1/266,Zm6=Ym6Cт66, интерпретируются как многомерные выборки. В нашей модели мы моделируем нестандартизованные (CтC¹I66) коррелированные z-переменные являются многомерными данными, объединенных в матрицу Zm6, в которой элементы j—го столбца z1j,z2j,…,zmj (j-ая переменная, j=1,…,6) имеют среднее арифмети ческое равное нулю: (1/m) (z1j+z2j+…+zmj) =0, и дисперсию не равную 1: (1/m) (z21j+z22j+…+z2mj) 1,сумма дисперсий не равна 6. Элементы матрицы C66 интерпретируются как индикаторы знаний. Матрица Ym6=Zm6C66, в которой элементы j—го столбца y1j, y2j,…,ymj (j-ая y-переменная, j=1,…,6) имеют среднее арифмети ческое равное нулю: (1/m) (y1j+y2j+…+ymj) =0, и дисперсию равную λj: (1/m) (y21j, +y22j+…+y2mj) =λj, сумма дисперсий равна 6:λ1+…+λ6=6. Матрица Ym6=Zm6C66, интер претируется как многомерная выборка. Нестандартизованные коррелированные z-переменные – данные, объединенные в матрицу Zm6, в которой элементы j—го столбца z1j, z2j, …, zmj (j-ая переменная, j=1,…,6) имеют среднее арифметическое равное нулю: (1/m) (z1j+z2j+ …+ zmj) =0 и дисперсию, не равную 1: (1/m) (z21j+ z22j+ … + z2mj) =1, сумма дисперсий не равна 6. Матрица Zm6 интерпретируется как многомерная выборка.

§5.3 Когнитивная модель явления «социальная лень»

Информационными компонентами когнитивной модели «социальная лень» являются:

1. Модельная пара матриц (C6666): матрица собственных чисел Λ66, матрица псевдособственных векторов С66 таких, что выполняются условие: C66Cт=I66, Cт66C66=¹I6666= diag1,…λ6), tr (Λ66) =λ1+…+λ6=6,λ1≥…≥λ6≥0, tr (Λ66) =λ1+ …+λ6=6, λ1≥…≥λ6≥0.tr (Λ66) =λ1+…+λ6= 6,Λ66=diag (2.4441,1.7629,1.7629,0.0100,0.0100,0.0100).

2. Матрица псевдособственных векторов С66 имеет вид, приведенный в Таблице 5.3.

3.Три смысловые формулы новый_смысл (y4) =смысл (z1) *0.4231Åсмысл (z2) * (-0.2435) +смысл (z3) * 0.4000Åсмысл (z4) *0.1826Åсмысл (z5) *0.2300Å смысл (z6) *0.2600.

4.Соответствующие матрице псевдособственных векторов С66 3 (из 6) числовых формул:

y4=z1*0.2+z2*0.596752+z3*0.2+z4*0.5440+z5*0.7392637+z6*0.2;

y5=z1* (-0.83666) + z2*0.2+ z3*0.2+z4* (-0.1947) +z5*0.1 + z6* 0.2;

y6=z1*0.2+z2* (-0.2) +z3* (0.2) +z4* (-0.4998) +z5* 0.3+смысл (z6*0.2).

5.Эти алгебраические формулы y —изменчивостей yi4, yi5, yi6, i=1,…,20, имеют дисперсии, равные значениям элементов l4=0.0100, l5=0.0100, l6=0.0100 из модельного спектра Λ66=diag (2.4441, 1.7629,1.7629,0.0100,0.0100,0.0100).

6. Вычисленные в рамках модели 18*3=54 индикаторов наличия модельных знаний, адекватных реальным знаниям явления «социальная лень».

7. Три смысловые формулы из пункта 3 выражаются словесно, 3 фразы этих знаний сформулированы в Таблице 5.3.

8. Три смысловые формулы из пункта 3 когнитивно сконструированы из смыслов 6 неизмеряемых зависимых друг от друга z-показателей явления «социальная лень». Три смысла: новый_смысл (y4), новый_смысл (y5), новый_смысл (y6) (свойственные соцлен-руководителю) влияют по смыслам друг на друга. Смысли z-показателей являются входными данными модели, они сформулированы в пункте «Исходные данные» статьи.

9.Состав исходных индикаторов (18 штук) отличен от состава модельных индикаторов, формально найденных при решении Оптимизационной Задачи, приведен в Таблице 5.3, строки 4,5,6.

10. Модельные матрицы Ym6,Zm6 (полученные путем компьютерного моделирования случайных матриц V0m6, Um6 алгебраической системы уравнений), соответствующих найденным выше 3 многосмысловым уравнениям, проведены в Таблицах 5.8 5.9.

  • Таблица 5.2. Модельная матрица С66 псевдособственных векторов
  • с 18 исходными или модельными индикаторами
  • Λ66=diag= (2.4441,1.7629,1.7629,0.0100,0.0100,0.0100)
Продолжение книги